
FINAL EVALUATION REPORT

The IBM Corporation

RS/6000 Distributed System

Running

AIX Version 4.3.1 TCSEC Evaluated C2 Security

Prepared by:

Arca Systems

TTAP Evaluation Facility

Final Evaluation Report: IBM RS/6000 Distributed System

i

Foreword
This publication, the Final Evaluation Report: The IBM Corporation RS/6000 Distributed
System running AIX Version 4.3.1 TCSEC Evaluated C2 Security, is being issued by the National
Computer Security Center under the authority of and in accordance with DoD Directive 5215.1,
Computer Security Evaluation Center. The purpose of this report is to document the results of
the formal evaluation of IBM Corporation’s RS/6000 Distributed System running AIX Version
4.3.1 TCSEC Evaluated C2 Security. The requirements stated in this report are taken from the
Department of Defense Trusted Computer System Evaluation Criteria, dated December 1985.

Final Evaluation Report: IBM RS/6000 Distributed System

ii

Acknowledgments
Evaluation Team Members

Douglas J. Landoll
Arca Systems

Diann A. Carpenter
Arca Systems

Christopher J. Romeo
Arca Systems

Suzanne S. McMillion
Computer Security Specialists Inc.

Final Evaluation Report: IBM RS/6000 Distributed System

iii

Trademarks
AIX is a registered trademark of International Business Machines Corporation.

Apple is a registered trademark of Apple Computer Corporation.

Arca Systems and Arca are trademarks of the Exodus Communications Company. Arca Systems
is a wholly owned subsidiary of Exodus Communications Company.

AT&T is a registered trademark of AT&T Corporation.

CHRP is a trademark of Apple Computer Corporation, International Business Machines
Corporation and Motorola, Inc.

Ethernet is a registered trademark of Xerox Corporation in the United States.

IBM is a registered trademark of International Business Machines Corporation.

Motorola is a registered trademark of Motorola, Inc.

Network File System is a trademark of Sun Microsystems, Inc.

NFS is a trademark of Sun Microsystems, Inc.

OSF, and OSF/1 are trademarks of Open Software Foundation, Inc.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).

PowerPC is a trademark of International Business Machines Corporation.

RS/6000 is a trademark of International Business Machines Corporation.

RT and RT/PC are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X Window System is a trademark of Massachusetts Institute of Technology.

All other trademarks are property of their respective trademark owners.

Final Evaluation Report: IBM RS/6000 Distributed System

iv

Table of Contents
FOREWORD ..I

ACKNOWLEDGMENTS... II

TRADEMARKS .. III

TABLE OF CONTENTS ... IV

EXECUTIVE SUMMARY ...XII

DISCLAIMER .. XIV

1. INTRODUCTION .. 1

1.1 EVALUATION PROCESS OVERVIEW ... 1
1.2 DOCUMENT ORGANIZATION... 2
1.3 CONVENTIONS .. 2
1.4 HISTORY... 3

2. SYSTEM OVERVIEW... 5

2.1 TYPICAL ENVIRONMENT AND APPLICATIONS .. 5
2.2 HIGH-LEVEL OVERVIEW .. 6

2.2.1 Kernel Services... 7
2.2.2 Non-Kernel Services ... 8
2.2.3 Network Services... 8

2.3 SECURITY POLICY ... 9
2.4 TCB STRUCTURE .. 10
2.5 TCB INTERFACES.. 11

2.5.1 Untrusted User Interfaces ... 11
2.5.2 Operation and Administrator Interface ... 12
2.5.3 Secure and Non-Secure States... 12

3. TCB INTERFACES.. 14

3.1 USER INTERFACES ... 14
3.1.1 Hardware Instructions .. 14
3.1.2 System Calls ... 14
3.1.3 Directly Invoked Trusted Processes... 15
3.1.4 Network Interfaces .. 15

3.1.4.1 Client-Server Interfaces ... 16
3.1.4.2 X Windows Interface ... 17

3.2 ADMINISTRATIVE INTERFACE... 17

4. TCB HARDWARE... 18

4.1 CPU ARCHITECTURE... 18
4.1.1 Execution States.. 19
4.1.2 CPU Registers .. 20

4.1.2.1 Problem State Registers ... 20
4.1.2.2 Shared Registers.. 21
4.1.2.3 Supervisor State Registers ... 21

4.1.3 Interrupts and Exceptions ... 22
4.1.3.1 Interrupts... 22

Final Evaluation Report: IBM RS/6000 Distributed System

v

4.1.3.2 Exceptions... 23
4.1.4 Instruction Set Overview... 23
4.1.5 CPU Caching.. 24

4.1.5.1 User level Cache Instructions... 25
4.2 SYSTEM BOARD COMPONENTS... 26

4.2.1 Buses and Bridges... 27
4.2.2 System Board Elements... 27

4.2.2.1 Level 2 Cache.. 27
4.2.2.2 Open Firmware and Flash Memory.. 28
4.2.2.3 Interrupt Controller.. 28
4.2.2.4 Serial and Parallel Ports... 29

4.3 PERIPHERALS .. 29
4.3.1 Adapters ... 29
4.3.2 Devices ... 30
4.3.3 Service Processors .. 31
4.3.4 Miscellaneous ... 32

4.4 HARDWARE COMPONENTS ROLE IN THE SECURITY POLICY.. 32
4.5 HARDWARE INPUT/OUTPUT ... 34
4.5 MULTIPROCESSING.. 38
4.6 MEMORY ARCHITECTURE.. 39

4.6.1 Segmentation .. 39
4.6.1.1 32-Bit Segmentation .. 40
4.6.1.2 64-Bit Segmentation .. 40

4.6.2 Address Translation .. 41
4.6.2.1 32-bit Address Translation... 42
4.6.2.2 64-bit Address Translation... 43
4.6.2.3 Block Address Translation... 44

4.6.3 Paging .. 46
4.6.4 Memory Protection ... 47

4.6.4.1 Segment Protection.. 47
4.6.4.2 Page Protection.. 47
4.6.4.3 Block Protection .. 47
4.6.4.4 Protection Violation... 48

4.7 CONTEXT SWITCHING.. 48
4.7.1 Registers and Threads... 48
4.7.2 Floating Point and Threads... 48
4.7.3 Cache ... 49

4.8 HARDWARE EQUIVALENCY .. 49

5. TCB SOFTWARE .. 50

5.1 TCB STRUCTURE .. 50
5.2 TCB DEFINITION .. 50

5.2.1 TCB Isolation Argument ... 50
5.2.1.1 TCB Protection.. 51
5.2.1.2 TCB Invocation Guarantees ... 51

5.2.2 Relationship to UNIX Systems... 52
5.2.3 Kernel... 52
5.2.4 Kernel Extensions ... 52
5.2.5 Kernel Processes (kprocs) ... 53
5.2.6 Trusted Processes ... 53
5.2.7 User Processes.. 54
5.2.8 TCB Databases ... 54
5.2.9 Internal TCB Protection Mechanisms.. 55

5.3 TCB SOFTWARE COMPONENTS.. 56
5.3.1 Memory Management ... 56

Final Evaluation Report: IBM RS/6000 Distributed System

vi

5.3.1.1 Segmentation... 56
5.3.1.2 Paging ... 57
5.3.1.3 Memory Protection and the Kernel... 58
5.3.1.4 Pinned Memory ... 58

5.3.2 Process Management .. 59
5.3.2.1 Typical Process Address Space .. 59
5.3.2.2 Kernel Process Management .. 61
5.3.2.3 Process Context ... 62
5.3.2.4 Thread Context.. 63
5.3.2.5 Process Creation .. 64
5.3.2.6 Process Destruction ... 65
5.3.2.7 Program Invocation.. 65
5.3.2.8 Multiprocessing... 66

5.3.3 File System and I/O... 66
5.3.3.1 File System Objects ... 66
5.3.3.2 File System Implementation... 68
5.3.3.3 Virtual File System Types.. 71
5.3.3.4 Access Revocation ... 86

5.3.4 I/O Management ... 87
5.3.4.1 High Level I/O Implementation.. 87
5.3.4.2 Low Level I/O Implementation... 88

5.3.5 Import and Export... 92
5.3.6 Backup and Restore .. 92
5.3.7 Inter-Process Communication ... 92

5.3.7.1 Unnamed Pipes.. 94
5.3.7.2 Named Pipes or FIFOs... 95
5.3.7.3 System V IPC .. 95
5.3.7.4 Sockets .. 98
5.3.7.5 Signals .. 99

5.3.8 Low-Level Network Interfaces and Communications Protocols.. 99
5.3.8.1 Network Interfaces..100
5.3.8.2 Internet Protocol ...101
5.3.8.3 TCP Layer ..102
5.3.8.4 UDP Layer..102
5.3.8.5 ICMP Protocol ..103
5.3.8.6 ARP ...103
5.3.8.7 RPC..103
5.3.8.8 Bind and Connect Interfaces to the Stack ..104
5.3.8.9 TCP/IP Stack ..104
5.3.8.10 TCP/IP and UDP/IP Protection Mechanisms ..106
5.3.8.11 Address Mapping...107

5.3.9 Network Applications...108
5.3.9.1 inetd ...110
5.3.9.2 telnet ..110
5.3.9.3 FTP ..110
5.3.9.4 NFS..111
5.3.9.5 SMTP...114
5.3.9.6 WSM..114
5.3.9.7 rlogin..116
5.3.9.8 rsh, rcp ...117
5.3.9.9 rexec ..117
5.3.9.10 HTTP ..117
5.3.9.11 Web Server..119
5.3.9.12 The Documentation Search Service ..120
5.3.9.13 X Windows..123
5.3.9.14 timed...124

5.3.10 Identification and Authentication ...124
5.3.10.1 User Identification and Authentication Data Management125
5.3.10.2 Common Authentication Mechanism..125

Final Evaluation Report: IBM RS/6000 Distributed System

vii

5.3.11 Interactive Login and Related Mechanisms..126
5.3.11.1 The Login Program..126
5.3.11.2 Network Login...127
5.3.11.3 User Identity Changing ..128
5.3.11.4 Login Processing..128
5.3.11.5 Logoff Processing ..129

5.3.12 Batch Processing ...129
5.3.12.1 Batch Processing User Commands ...129
5.3.12.2 Batch Processing Daemon..130

5.3.13 Printer Services ...131
5.3.13.1 Daemons Used with Printing..131
5.3.13.2 Interface for Queuing Print Jobs...131
5.3.13.3 Interface for Manipulating Print Queues...131
5.3.13.4 Print Job Processing...132

5.3.14 Mail ...133
5.3.14.1 Mail Reading...133
5.3.14.2 Mail Delivery ..134

5.3.15 Auditing...136
5.3.15.1 Audit Record Format ...136
5.3.15.2 Audit Control...137
5.3.15.3 Audit Record Generation ...138
5.3.15.4 Audit Record Processing..139
5.3.15.5 Audit Review...141
5.3.15.6 Audit File Protection..142
5.3.15.7 Audit Record Loss Potential...142
5.3.15.8 Administrative Auditing ..143

5.3.16 Initialization and Shutdown..143
5.3.16.1 Boot Methods ..143
5.3.16.2 Boot Image ..144
5.3.16.3 Boot Process ..144
5.3.16.4 Shutdown ..146

5.4 TCB SUPPORT ...146
5.4.1 Internal Daemons ..146
5.4.2 Uninteresting Trusted Processes ..147
5.4.3 TCB Libraries ..147

6. TCB RESOURCES..148

6.1 RESOURCE CHARACTERISTICS...148
6.1.1 Creation...148
6.1.2 Discretionary Access Control...148
6.1.3 Object Reuse..149
6.1.4 Named Objects...149
6.1.5 Storage Objects..149
6.1.6 Public Objects ...150

6.2 USERS..151
6.2.1 User Roles ...151
6.2.2 User Attributes...151

6.2.2.1 Identity...151
6.2.2.2 Groups..152
6.2.2.3 Authentication ..153
6.2.2.4 Audit Control..154

6.2.3 User Database ...154
6.3 SUBJECTS...155

6.3.1 Identity Attributes ..156
6.3.2 Additional Process Security Attributes ...156
6.3.3 Privilege Attributes..156

Final Evaluation Report: IBM RS/6000 Distributed System

viii

6.4 FILE SYSTEM RESOURCES SECURITY ATTRIBUTES..157
6.4.1 Common File System Resource Attributes ..157
6.4.2 Ordinary File Security Attributes ...158
6.4.3 Directory and Directory Entry Security Attributes ...158
6.4.4 Symbolic Link Security Attributes ..158
6.4.5 Device Special File Security Attributes ..158
6.4.6 Named Pipe (FIFO) Security Attributes..158
6.4.7 Unnamed Pipe Security Attributes..158
6.4.8 Socket Special File (UNIX Domain) Security Attributes ...159

6.5 INTER-PROCESS COMMUNICATION RESOURCES SECURITY ATTRIBUTES ..159
6.5.1 System V Shared Memory Security Attributes...159
6.5.2 System V Message Queues Security Attributes..159
6.5.3 System V Semaphores Security Attributes...159

6.6 QUEUING SYSTEM RELATED RESOURCES SECURITY ATTRIBUTES ...159
6.6.1 Printer Queue Entry Security Attributes...159
6.6.2 At-Job Queue Entry Security Attributes..160
6.6.3 Crontab File Security Attributes ..160

6.7 MISCELLANEOUS RESOURCES SECURITY ATTRIBUTES..160
6.7.1 Processes ...160
6.7.2 Datagrams and TCP Connections ..160
6.7.3 Mail Files ..160
6.7.4 Printer DRAM..160
6.7.5 Frame Buffer ...161

7. TCB POLICIES...162

7.1 IDENTIFICATION AND AUTHENTICATION..162
7.1.1 Interactive Login and Passwords..162

7.1.1.1 Administrative Configuration Options Effecting TCB Policies...162
7.1.1.2 Password Authentication...163
7.1.1.3 Changing Identity Policy...164
7.1.1.4 Authentication Failure Handling ...164

7.1.2 Batch Authentication ...164
7.2 PRIVILEGES..165

7.2.1 Process Privilege Sets..165
7.2.1.1 fork ..165
7.2.1.2 exec..165
7.2.1.3 setuid ...166

7.2.2 Privilege Control Lists ...166
7.3 DISCRETIONARY ACCESS CONTROL ..166

7.3.1 Permission Bits ..167
7.3.2 Extended Permissions ..168
7.3.3 Pathname Traversal and Access Decision Flowchart ...169

7.4 DISCRETIONARY ACCESS CONTROL: FILE SYSTEM OBJECTS...171
7.4.1 Common File System Access Control ...171

7.4.1.1 DAC Contents Policy..171
7.4.1.2 DAC Attributes Policy ..171
7.4.1.3 DAC Defaults ...171
7.4.1.4 DAC Revocation on File System Objects...172

7.4.2 DAC: Ordinary File ...172
7.4.3 DAC: Directory ...172
7.4.4 DAC: Device Special File ..173
7.4.5 DAC: UNIX Domain Socket Special File ...173
7.4.6 DAC: Named Pipes ..173
7.4.7 DAC: Special Cases for NFS File Systems ...173

7.5 DISCRETIONARY ACCESS CONTROL: IPC OBJECTS ..174

Final Evaluation Report: IBM RS/6000 Distributed System

ix

7.5.1 DAC: Shared Memory..174
7.5.2 DAC: Message Queues ..174
7.5.3 DAC: Semaphores..175

7.6 OBJECT REUSE ...176
7.6.1 Object Reuse: File System Objects...176

7.6.1.1 Object Reuse: Files...177
7.6.1.2 Object Reuse: Directories and Directory Entries..177
7.6.1.3 Object Reuse: Symbolic Links...178
7.6.1.4 Object Reuse: Device Special Files ...178
7.6.1.5 Object Reuse: Named Pipes ..178
7.6.1.6 Object Reuse: Unnamed Pipes ..178
7.6.1.7 Object Reuse: Socket Special File (UNIX Domain) ...178

7.6.2 Object Reuse: IPC Objects...178
7.6.3 Object Reuse: Queuing System Objects..179

7.6.3.1 Object Reuse: Printer Job Description Files ..179
7.6.3.2 Object Reuse: Batch Queue Entries...179

7.6.4 Object Reuse: Miscellaneous Objects...179
7.6.4.1 Object Reuse: Process...179
7.6.4.2 Object Reuse: Datagrams..180
7.6.4.3 Object Reuse: Mail Files...180
7.6.4.4 Object Reuse: Printer DRAM..180
7.6.4.5 X Windows Resources and Frame Buffer ..180

7.7 AUDIT ...180
7.7.1 Summary of Audit Events ...180
7.7.2 Audit: File System Objects ...181
7.7.3 Audit: Device and Media Resources...181

7.7.3.1 Audit: Tape Resources ..181
7.7.3.2 Audit: Printer Resources ...182
7.7.3.3 Audit: File Systems...182

7.7.4 Audit: Deferred Execution Resources...182
7.7.5 Audit: Network Resources ..182

8. ASSURANCES...183

8.1 SYSTEM ARCHITECTURE...183
8.2 SYSTEM INTEGRITY TESTS..183

8.2.1 Power On Self Test (POST) ..183
8.2.2 Diagnostic Software ...183

8.3 DESIGN DOCUMENTATION ..184
8.4 USER DOCUMENTATION..184

8.4.1 Security Features Users Guide...185
8.4.2 Trusted Facility Manual...185

8.5 SECURITY TESTING ..186
8.5.1 Test Documentation ...186
8.5.2 Test Philosophy..186
8.5.3 Test Mechanisms..187

8.5.3.1 Automation...187
8.5.3.2 Configuration Control ...188
8.5.3.3 Test Configurations ..188

8.5.4 Test Coverage by Requirement...188
8.5.4.1 Access Control (DAC) ..189
8.5.4.2 Audit ..189
8.5.4.3 Identification and Authentication ..189
8.5.4.4 System Architecture..189
8.5.4.5 Object Reuse ..189

8.5.5 Evaluation Team Testing..190

9. EVALUATION AS A TCSEC C2 SYSTEM...191

Final Evaluation Report: IBM RS/6000 Distributed System

x

9.1 DISCRETIONARY ACCESS CONTROL ..191
9.1.1 Requirement...191
9.1.2 Interpretations ...191
9.1.3 Applicable Features...192

9.1.3.1 Requirement ...192
9.1.3.2 Interpretations ..192

9.1.4 Conclusion...193
9.2 OBJECT REUSE ...193

9.2.1 Requirement...193
9.2.2 Interpretations ...193
9.2.3 Applicable Features...193

9.2.3.1 Requirement ...193
9.2.3.2 Interpretations ..194

9.2.4 Conclusion...194
9.3 IDENTIFICATION AND AUTHENTICATION..194

9.3.1 Requirement...194
9.3.2 Interpretations ...194
9.3.3 Applicable Features...195

9.3.3.1 Requirement ...195
9.3.3.2 Interpretations ..196

9.3.4 Conclusion...196
9.4 AUDIT ...196

9.4.1 Requirement...196
9.4.2 Interpretations ...197
9.4.3 Applicable Features...198

9.4.3.1 Requirement ...198
9.4.3.2 Interpretations ..199

9.4.4 Conclusion...199
9.5 SYSTEM ARCHITECTURE...199

9.5.1 Requirement...199
9.5.2 Interpretations ...200
9.5.3 Applicable Features...200

9.5.3.1 Requirement ...200
9.5.3.2 Interpretations ..201

9.5.4 Conclusion...201
9.6 SYSTEM INTEGRITY..201

9.6.1 Requirement...201
9.6.2 Interpretations ...201
9.6.3 Applicable Features...201

9.6.3.1 Requirement ...201
9.6.3.2 Interpretations ..202

9.6.4 Conclusion...202
9.7 SECURITY TESTING ..202

9.7.1 Requirement...202
9.7.2 Interpretations ...203
9.7.3 Applicable Features...203

9.7.3.1 Requirement ...203
9.7.3.2 Interpretations ..203

9.7.4 Conclusion...203
9.8 SECURITY FEATURES USER’S GUIDE ..203

9.8.1 Requirement...203
9.8.2 Interpretations ...204
9.8.3 Applicable Features...204

9.8.3.1 Requirement ...204
9.8.3.2 Interpretations ..204

Final Evaluation Report: IBM RS/6000 Distributed System

xi

9.8.4 Conclusion...204
9.9 TRUSTED FACILITY MANUAL ..204

9.9.1 Requirement...204
9.9.2 Interpretations ...205
9.9.3 Applicable Features...205

9.9.3.1 Requirement ...205
9.9.3.2 Interpretations ..206

9.9.4 Conclusion...206
9.10 TEST DOCUMENTATION ...207

9.10.1 Requirement...207
9.10.2 Interpretations ...207
9.10.3 Applicable Features...207

9.10.3.1 Requirement ..207
9.10.3.2 Interpretations ...207

9.10.4 Conclusion...207
9.11 DESIGN DOCUMENTATION..208

9.11.1 Requirement...208
9.11.2 Interpretations ...208
9.11.3 Applicable Features...208

9.11.3.1 Requirement ..208
9.11.3.2 Interpretations ...208

9.11.4 Conclusion...209

APPENDIX A: EVALUATED HARDWARE COMPONENTS ...210

APPENDIX B: EVALUATED SOFTWARE...212

APPENDIX C: ACRONYMS...213

APPENDIX D: GLOSSARY ..215

APPENDIX E: REFERENCES ..219

APPENDIX F: EPL ENTRY ..222

APPENDIX G. AUDIT RECORD FORMAT..224

APPENDIX H. TRUSTED PROGRAMS ..236

APPENDIX I: EVALUATOR COMMENTS...245

Final Evaluation Report: IBM RS/6000 Distributed System

xii

Executive Summary
The RS/6000 Distributed System running AIX Version 4.3.1 TCSEC Evaluated C2 Security has
been evaluated by a team from the Trust Technology Assessment Program (TTAP) Evaluation
Facility at Arca Systems. In order to achieve a C2 level of trust rating, the security features of the
RS/6000 Distributed System were examined against the requirements specified by the National
Department of Defense Trusted Computer System Evaluation Criteria (TCSEC), dated 26
December 1985.

The Arca evaluation team has determined that, when configured as described in the Trusted
Facility Manual, the RS/6000 Distributed System satisfies all the specified requirements of the
TCSEC at the C2 level of trust.

A C2 level of trust system provides a Trusted Computing Base (TCB) that implements the
following:

• User identification and authentication to control general system access;

• Discretionary access control to protect objects and allow users to distribute access to
those objects as appropriate; and

• Auditing to provide general user accountability.

User identification and authentication is performed on both interactive login and batch processing.
Users are identified by their UID and authenticated by their password. Once a user has
successfully logged in to one host in the RS/6000 Distributed System, the user may access other
hosts in the distributed system.

Discretionary Access Control (DAC) is provided by a mechanism that allows users to specify and
control access to objects that they own. DAC attributes are assigned to an object when it is
created and remain in effect until the object is destroyed or its attributes are changed. The DAC
policy on each named object can be specified and controlled through permission bits or,
optionally, through access control lists (ACLs). Permission bits are the standard UNIX DAC
mechanism and are used on all RS/6000 Distributed System file system objects. Individual bits are
used to indicate permission for read, write, and execute access for the three categories of object
users: owner, group and world. There is an optional ACL mechanism that provides a finer level of
granularity than permission bits. ACLs can establish separate DAC settings for individual users
and groups.

An administrator may specify the auditing of individual events or users. Audit log files are
generated based on the audit events selected and the security relevant actions of the users and are
generated on each host computer of the RS/6000 Distributed System.

The system architecture of the RS/6000 Distributed System provides a resistant, isolated domain
that helps to protect it from external interference or tampering. System integrity tests are available
to periodically verify the correct operation of both the hardware and firmware elements of the
TCB. The IBM Corporation performed security testing of the security mechanisms against the
system design description. The evaluation team reviewed the IBM Corporation testing and

Final Evaluation Report: IBM RS/6000 Distributed System

xiii

conducted a subset of those tests in addition to its own security tests to ensure that no obvious
security flaws exist in the evaluated system.

The Target of Evaluation is a system of IBM RS/6000 host computers connected via a physically
protected Local Area Network, communicating via TCP/IP networking. The RS/6000 is a line of
high performance Uni-Processor and Symmetric Multi-Processing computers based on 32 bit and
64 bit PowerPC processors. All hosts run the AIX Version 4.3.1 TCSEC Evaluated C2 Security
operating system. The Advanced Interactive eXecutive (AIX) operating system is a general-
purpose time-sharing operating system based on the AT&T System V UNIX system and
incorporates many of the network functions and other enhancements from Berkeley Software
Distribution UNIX. AIX is differentiated from other UNIX products by its system administration
tools, Journaled File System, pageable/preemptable kernel, loadable kernel extensions, hardware
error detection, and available applications.

In summary, the RS/6000 Distributed System running AIX Version 4.3.1 TCSEC Evaluated C2
Security satisfies all requirements at the TCSEC C2 level of trust (C2).

Final Evaluation Report: IBM RS/6000 Distributed System

xiv

Disclaimer
This document describes features which are unique to the evaluated configuration and which may
not be present in other AIX releases or configurations. The description of internal system
interfaces, data structures or features does not constitute an agreement by the IBM Corporation
to provide those interfaces, data structures or features in future releases of AIX.

Final Evaluation Report: IBM RS/6000 Distributed System

1

1. INTRODUCTION
In October of 1997, during the National Information Systems Security Conference, the National
Security Agency (NSA) announced that it would no longer conduct new evaluations of C2 or B1
products and that future product evaluations would be conducted by authorized commercial
facilities under the Trust Technology Assessment Program (TTAP). Following the announcement,
the NSA signed Cooperative Research and Development Agreements with several commercial
laboratories to become authorized commercial facilities under TTAP and allow them to begin C2
and B1 evaluations.

On February 23, 1998, Arca Systems, an authorized TTAP Facility, accepted IBM’s RS/6000
Distributed System running AIX Version 4.3.1 TCSEC Evaluated C2 Security for evaluation
against the requirements of the TCSEC C2 level of trust.

1.1 Evaluation Process Overview
The Department of Defense Computer Security Center was established within the NSA in January
1981 to encourage the widespread availability of trusted computer systems for use by facilities
processing classified or other sensitive information. In August 1985, the name of the organization
was changed to the National Computer Security Center (NCSC). The Trusted Computer System
Evaluation Criteria (TCSEC) was written in order to assist in assessing the degree of trust one
places in a given computer system. The TCSEC states the specific requirements a computer
system must meet in order to achieve a particular level of trustworthiness. The TCSEC levels are
arranged hierarchically into four major divisions of protection, each with definite security-relevant
characteristics. These divisions are in turn subdivided into classes. To determine the division and
class requirements met by a system, the system must be evaluated against the TCSEC by a NSA-
approved trusted product evaluation team.

Prior to January 1997, the NCSC conducted all U.S. trusted product evaluations through the
Trusted Product Evaluation Program (TPEP). With the advent of TTAP in January 1997,
authorized commercial facilities were granted the ability to perform a portion of these evaluations
on behalf of the National Security Agency (NSA).

 The National Security Agency implemented TTAP in January of 1997 to authorize and oversee
commercial facilities performing trusted product evaluations. The principle mechanism for TTAP
oversight is the TTAP Oversight Board, which monitors authorized facilities to ensure quality and
consistency across evaluations.

 Evaluation is an analysis of the hardware and software components of the product, which includes
system training, security analysis, and review of the design, user, and test documents. The
evaluation team uses the documentation to produce an Initial Product Assessment Report (IPAR)
that is reviewed by a Technical Review Board (TRB). The evaluation team briefs the TRB on the
product’s security architecture and its plan to perform security testing on the product. After the
evaluation team performs security testing on the product, the results of security testing are
included in a revised IPAR called the Final Evaluation Report (FER). The evaluation team

Final Evaluation Report: IBM RS/6000 Distributed System

2

presents the results of testing at the Final TRB meeting. The TRB then makes recommendations
about the product’s security entry on the Evaluated Products List (EPL).

1.2 Document Organization
This document is organized as follows:

• Chapter 1 - Introduction

• Chapter 2 - System Overview - high level overview of system security policy and
mechanisms.

• Chapter 3 - TCB Interfaces - description of the different types of the TCB interfaces.

• Chapter 4 - TCB Hardware - system hardware architecture.

• Chapter 5 - TCB Software - system software architecture.

• Chapter 6 - TCB Resources - security relevant resources and attributes.

• Chapter 7 - TCB Policies - security policies and mechanisms.

• Chapter 8 - Assurances - additional assurances (e.g., documentation and testing).

• Chapter 9 - Evaluation as a C2 compliant system - evaluation of the product against
the applicable TCSEC requirements.

• Appendix A - Evaluated Hardware Components - identification of evaluated hardware

• Appendix B - Evaluated Software - identification of evaluated software.

• Appendix C - Acronyms

• Appendix D - Glossary

• Appendix E - References

• Appendix F - Product Bulletin - EPL entry for the RS/6000 Distributed System.

• Appendix G - Audit Record Format - audit event types.

• Appendix H - Trusted Programs - non-kernel TCB programs.

• Appendix I - Evaluator Comments

1.3 Conventions
The following typographical conventions have been used.

Convention/Use Description

COMMANDS Names of commands, processes, and programs (non-kernel) and libraries

pathnames Names and pathnames of files and directories

System calls Names of system calls (these invoke the kernel TCB)

Protocols and daemons Names of network protocols and daemons

Final Evaluation Report: IBM RS/6000 Distributed System

3

1.4 History
Advanced Interactive eXecutive (AIX) is IBM’s version of the UNIX operating system. AIX is
based on AT&T System V Release 2 and incorporates Berkeley Software Distribution (BSD)
enhancements and additional features developed by IBM. The first implementation of AIX goes
back over ten years, when AIX was developed for the IBM RT/PC.

The RS/6000 hardware is based on the PowerPC RISC processor, which was produced through a
cooperative effort between IBM, Apple, and Motorola. Ancestors of the PowerPC-based
RS/6000 include the POWER 9-chip processor module, the POWER2 (a faster, floating-point
version of POWER), the RSC (a single-chip version of POWER), and the P2SC (a single-chip
version of the POWER2). The first PowerPC-based RS/6000 systems were based on the 601 (the
original PowerPC processor) and the 603. AIX still runs on all of these processors, but these
earlier versions of the RS/6000 are not included in the ToE.

Table 1-1 summarizes the history of the AIX operating system and the RS/6000 hardware. As
shown in the table, external ancestors of AIX include System V, BSD 4.2, and the OSF/1
operating system. The two primary influences on the ToE were AIX Version 3 and the OSF/1
operating system.

Final Evaluation Report: IBM RS/6000 Distributed System

4

Table 1-1. Product History. The evaluated product evolved from AIX and was heavily
influenced by OSF/1 and the TCSEC C2 criteria.

Date Event
1984 • AT&T System V.2.
1986 • AIX Version 2

This was the first implementation of AIX, which ran on the RT PC computer. It was derived from the
AT&T distribution of System V Release 2 with enhancements from BSD 4.2. AIX ran on a Virtual
Resource Manager (VRM) that implemented a virtual machine on top of the RT PC hardware.

1990 • AIX Version 3
This was the first version of AIX to run on the RS/ 6000, using the POWER processor. It maintained the
System V Release 2 interface, with BSD 4.3 extensions such as enhanced signals and group lists, and IBM
extensions such as mapped files. Capabilities derived from the RT VRM include a kernel that can have
portions paged out and can be preempted. New features included the Journaled File System (JFS), support
for logical disk partitioning (Logical Volume Manager), dynamically installable kernel extensions, and
dynamic program management.

• OSF/1
The most recent external influence on AIX was the Open Software Foundation (OSF) and the OSF/1
operating system. As a founding member of OSF, IBM contributed source code (commands, libraries, and
Logical Volume Manager) and concepts to OSF/1. In return, IBM used OSF/1 code as the basis for its
standardization of AIX Version 4.

1991 • IBM, Apple, Motorola PowerPC alliance formed.
1993 • IBM PowerPC hardware introduced.

• IBM Scalable POWER Parallel SP/1 introduced. Although the SP architecture is not included in the
evaluated configuration, it uses RS/6000 hardware running AIX.

• AIX Version 3.2.5 released.
1994 • AIX Version 4.1.

Version 4 included major changes for thread-based scheduling, enhancements to JFS, and System V
streams. Version 4 also included changes to comply with industry standards such as POSIX and XPG4.

• RS/6000 SMP hardware introduced.
1996 • AIX Version 4.2.

Greater than 2GB (up to 64GB) file support introduced.
ITSEC E3/F-C2 security certification (completed 1997).
Extensive standards compliance, including UNIX 95 branding.

1997 • AIX Version 4.3.0
64-bit ABI and concurrent 32-bit and 64-bit application support.
Concurrent IP-V4 and IP-V6 support.
Web-based System Management (WSM).
ITSEC E3/F-C2 security certification (completed April 1998).
HTML based documentation.
Print spooler enhancements to handle up to 1000 jobs.

• Introduction of following RS/6000 hardware platforms used in evaluated configuration:
RS/6000 43P (workstation)
RS/6000 Model F50 (workgroup server)
RS/6000 Model S70 (enterprise server).

1998 • AIX Version 4.3.1 announced and general availability scheduled. See Announcement Letter No. 298-108.
• Continuing hardware evolution, including 43P Model 150 and new Ethernet and Token Ring adapters.
• AIX 4.3.1 is UNIX98 Branded.
• AIX 4.3.1 is POSIX 1003.1c compliant.
• RS/6000 Distributed System running AIX Version 4.3.1 TCSEC Evaluated C2 Security completes C2

evaluation.
1999 • AIX Version 4.3.1 TCSEC Evaluated C2 Security announced and generally available.

Final Evaluation Report: IBM RS/6000 Distributed System

5

2. SYSTEM OVERVIEW
The Target of Evaluation is a system of IBM RS/6000 host computers connected via a physically
protected Local Area Network. The hosts that make up the distributed system communicate using
the TCP/IP protocol.

The RS/6000 is a line of high performance Uni-Processor and Symmetric Multi-Processor
computers based on 32-bit and 64-bit PowerPC processors. All hosts run the same C2 version
(AIX Version 4.3.1 TCSEC Evaluated C2 Security) of the Advanced Interactive eXecutive (AIX)
4.3.1 operating system. AIX Version 4.3.1 TCSEC Evaluated C2 Security is a general-purpose
time-sharing operating system based on AT&T System V UNIX, incorporating many of the
network functions and other enhancements from Berkeley Software Distribution UNIX. AIX is
differentiated from other UNIX products by its system administration tools, Journaled File
System, ability to page out portions of the kernel, preempt the kernel, and dynamically load kernel
extensions.

2.1 Typical Environment and Applications
The Target of Evaluation (ToE) consists of one or multiple interconnected RS/6000 computer(s).
Each of these computers is running AIX Version 4.3.1 TCSEC Evaluated C2 Security. Various
models of RS/6000 computers are included in the evaluated configuration. Some are
characterized as workstations and others as servers.

This closed network of hosts operates as a single system in the following aspects:

• All hosts run AIX Version 4.3.1 TCSEC Evaluated C2 Security.

• All hosts share a common user and group database. The user and group files are
maintained on a master server and exported to all hosts via the Network File System
(NFS). The shared information includes user name to User ID (UID) mappings, group
name to Group ID (GID) mappings, user security attributes, and user authentication data.
There may only be one master server per system configuration, even if that system consists
of multiple LAN segments.

• All hosts have a common mapping of host names to Internet Protocol (IP) addresses.

• Administration is centrally and uniformly applied to all hosts.

• Audit tools are available and are used to merge audit files to assist in the tracking of an
individual’s activities across multiple host computers.

Local Area Networks (LANs) are included within the evaluation boundary because they are the
equivalent of a backplane bus within a multiprocessor computer. No external routers, bridges, or
repeaters are included in the configuration. When a system includes more than one LAN segment,
AIX provides kernel-based routing of IP from one network to another. Figure 2-1 illustrates three
compliant configurations: (a) a single, standalone RS/6000 system, (b) multiple RS/6000
computers on a LAN, and (c) a system with multiple LAN segments of the evaluated RS/6000
Distributed System.

Final Evaluation Report: IBM RS/6000 Distributed System

6

AIX 4.3

RS/6000

(a) Standalone Host

AIX 4.3

RS/6000

AIX 4.3

RS/6000

AIX 4.3

RS/6000

AIX 4.3

RS/6000

AIX 4.3

RS/6000

AIX 4.3

RS/6000

(b) Multiple Hosts on a LAN

AIX 4.3

RS/6000

Host 2

AIX 4.3

RS/6000

Host 4

AIX 4.3

RS/6000

AIX 4.3

RS/6000

(c) Arrangement of six LANs, with shaded hosts performing IP routing

LAN-A
LAN-B LAN-C

LAN-D

Host 3

Host 5Host 1

Figure 2-1. RS/6000 System Configurations. The RS/6000 Distributed System may be
configured as a single, standalone RS/6000 system, multiple RS/6000 computers on a LAN, or as

a system with multiple LAN segments.

2.2 High-Level Overview
The RS/6000 Distributed System provides a multi-user, multitasking environment, where users
interact with the operating system through commands issued to a command interpreter. The
command interpreter invokes command programs, which in turn function by making system calls
to the operating system kernel. The Trusted Computing Base (TCB) is comprised of the kernel
and trusted processes (trusted programs that are not part of the kernel). All operations performed
by users are mediated by the TCB in accordance with the policies defined in Chapter 7.

Within the RS/6000 Distributed System a user can LOGIN to the console of any RS/6000 host
computer, request local services at that computer, as well as request network services from any
other host in the system.

Processes perform all activity. A process may be started by a user issuing a command, may be
created automatically to service a network request, or may be part of the running system created
at system initialization. Each process is running a program. A process may begin running a new
program (i.e., via the exec system call), or create a copy of itself (i.e., via the fork system call).
Some activities, such as responding to network requests, are performed directly by the kernel.

Final Evaluation Report: IBM RS/6000 Distributed System

7

The following sections discuss services provided by the kernel, by non-kernel trusted software,
and the network services. Network services are discussed separately because their implementation
is split between kernel and non-kernel components.

2.2.1 Kernel Services
The AIX kernel includes the base kernel and kernel extensions. The base kernel includes support
for system initialization, memory management, file and I/O management, process control, audit
services and Inter-Process Communications (IPC) services. Kernel extensions and device drivers
are separate kernel software modules that perform specific functions within the operating system.
Device drivers are implemented as kernel extensions.

The base kernel has the following key characteristics:

• Can be paged out: Portions of the kernel code and data can be paged out, permitting the
kernel to run using less memory than would be required for the whole kernel.

• Pinned: Part of the kernel is always resident or "pinned" into memory and cannot be
paged. Pinned code cannot call kernel services that may result in a page fault.

• Can be preempted: The AIX kernel can be preempted. Higher priority threads may
interrupt the kernel thread, providing support for time critical functions.

• Dynamic and extendible: In standard AIX, kernel extensions can be loaded and
unloaded while the system is running to allow a dynamic, extendible kernel without
requiring a rebuild and reboot. In the evaluated configuration, dynamic changes to the
kernel are prohibited through TFM warnings. At system start up, only the kernel
extensions that are part of the evaluated product may be loaded. As an example, the
administrator can add pieces of evaluated hardware to a specific configuration and reboot
the system. This will cause the kernel extensions that support the needed device drivers for
the new hardware to be loaded. The ability to load/unload kernel extensions is restricted to
the root identity.

 The AIX kernel implements a virtual memory manager (VMM) that allocates a large, contiguous
address space to each process running on the system. This address space is spread across physical
memory and paging space on a secondary storage device. The VMM manages the paging space
used by the AIX file system and provides memory buffers for use within the kernel. The file
system and VMM are tightly coupled. Disk pages, whether for file I/O or paging space, are
faulted into free pages in memory. The VMM does not maintain a separate pool of pages solely
for file system I/O.

 The process management component includes the software that is responsible for creating,
scheduling, and terminating processes and process threads. Process management allows multiple
processes to exist simultaneously on a computer and to share usage of the computer’s
processor(s). A process is defined as a program in execution, that is, it consists of the program
and the execution state of the program.

Final Evaluation Report: IBM RS/6000 Distributed System

8

 Process management also provides services such as inter-process communications (IPC) and
event notification. The base kernel implements

• named pipes

• unnamed pipes

• signals

• System V semaphores

• System V shared memory

• System V message queues

• Internet domain sockets

• UNIX domain sockets

• Audit event generation

The file and I/O software provides access to files and devices. The AIX Logical File System
(LFS) provides a consistent view of multiple physical file system implementations. There are four
different types of file systems included in the evaluated configuration: Journaled File System
(JFS), CDROM File System (CDRFS), Network File System (NFS) and the Special File File
System (SPECFS). JFS and CDRFS work off of a physical medium (disk, CDROM) and NFS
works across the network. SPECFS is a file system used internally by the kernel to support disk
and other physical and virtual device I/O.

2.2.2 Non-Kernel Services
The non-kernel TCB services are:

• Batch processing using AT and CRONTAB

• Printer services

• Tape services (for administrator use only)

• AIX Administration (WSM)

• Identification and Authentication services

• Auditing journaling and post-processing services

• Network application layer services

Full descriptions of these services are provided in Chapter 5.

2.2.3 Network Services
Each host computer in the system is capable of providing the following types of services:

• Local services to the user currently logged in to the local computer console.

• Local services to previous users via deferred jobs.

• Local services to users who have accessed the local host via the network using protocols
such as telnet.

• Network services to clients on either the local host or on remote hosts.

Final Evaluation Report: IBM RS/6000 Distributed System

9

 Network services are provided to clients via a client-server architecture. This client-server
architecture refers to the division of the software that provides a service into a client portion,
which makes requests, and a server portion, which carries out client requests (usually on a
different computer). A service protocol acts as the interface between the client and server.

 The primary low-level protocols are Internet Protocol (IP), Transmission Control Protocol (TCP),
and User Datagram Protocol (UDP). IP is not user visible, but non-TCB processes may
communicate with other hosts in the distributed system using a reliable byte stream or unreliable
datagrams, TCP and UDP respectively.

 The higher-level network services are built on TCP or UDP. While the TCB supports the TCP
application protocols listed below, only the timed application protocol uses UDP and is provided
by the TCB in the evaluated configuration. The application protocols provided using TCP are:

• Internet remote login and file transfer services (telnet and ftp) are supported within the
evaluated product, as are similar BSD interfaces, including remote command execution
(rlogin, rcp, rsh, rexec).

• The Simple Mail Transfer Protocol (SMTP) is supported for mail delivery across the
distributed system.

• The lpd protocol is supported for remote printing.

• The Hyper-Text Transfer Protocol (HTTP) is used by the WebInfo document display
system (docsearch) for the presentation of public data.

• The WSM protocol is supported for remote host administration.

• The Network File System (NFS) protocol is supported for remote file access. This
includes some subsidiary protocols, such as the Remote Procedure Call (RPC), portmap
protocols, and the mountd protocol for file system import and export.

The RS/6000 Distributed System includes multiple X Windows clients in addition to an X
Windows server on each host. Each server accepts connections from local clients using UNIX
domain sockets.

2.3 Security Policy
Since the ToE is distributed across multiple host computers, each running a semiautonomous
instance of the C2 version of the AIX operating system, the policy is described as follows:

• There is not a single kernel; rather, there is an AIX kernel running on each host computer
in the system.

• The system does not have a common memory space; rather, each host in the system has its
own memory space. Memory management, segmentation and paging are all managed
locally, without respect to other hosts.

• Identification and authentication (I&A) is performed locally by each host computer, but
uses a common database. Each user is required to LOGIN with a valid password and user
identifier combination at the local workstation and also at any remote computer where the
user can enter commands to a shell program (e.g., remote login, and telnet sessions).

Final Evaluation Report: IBM RS/6000 Distributed System

10

• Neither the process ID, nor the associated thread IDs, are unique within the system;
rather, a PID, and its associated TIDs, are unique on each host within the system. Process
and thread management is performed locally, without respect to other hosts.

• The names of objects may not be unique within the system; rather, object names are
unique on each host. For example, each host maintains its own local file system, but may
mount NFS exported file systems at various locations in the local directory tree.

• Discretionary access control (DAC) is performed locally by each of the host computers
and is based on user identity and group membership. Each process has an identity (the user
on whose behalf it is operating) and belongs to one or more groups. All named objects
have an owning user, an owning group and a DAC attribute, which is a set of permission
bits. In addition, file system objects optionally have an extended permission list also
known as an Access Control List (ACL). The extended permissions mechanism is a
significant enhancement beyond traditional UNIX systems, and permits control of access
based on lists of users and/or groups to whom specific permissions may be individually
granted or denied.

• Object reuse is performed locally, without respect to other hosts.

• Audit is performed locally by each host computer. The audit facility generates audit
records for activities performed directly by untrusted processes (e.g., the system calls that
perform file I/O) as well as trusted process activities (e.g., requests for batch jobs). Audit
tools are available to merge audit files from the various hosts.

• Interrupt handling is performed locally, without respect to other hosts.

• Privilege is based on the root identity. All privileged processes (setuid root programs and
programs run under the root identity) start as processes with all privileges enabled.
Unprivileged processes, which include setgid trusted processes, start and end with no
privileges enabled.

2.4 TCB Structure
The Trusted Computing Base is the portion of the system that is responsible for enforcing the
system’s security policy. The RS/6000 Distributed System TCB is distributed across each
RS/6000 host computer and consists of four major components: hardware, kernel software, kernel
extension software, and trusted processes. All these components must operate correctly for the
system to be trusted.

The RS/6000 Distributed System hardware components support two execution states where
kernel mode or supervisor state, software runs with hardware privilege and user mode or problem
state software runs without hardware privilege. AIX also provides two types of memory
protection: segmentation and page protection. The memory protection features isolate critical
parts of the kernel from user processes and ensure that segments in use by one process are not
available to other processes. The two-state architecture and the memory protections form the
basis of the argument for TCB and process isolation.

The trusted processes include programs such as AIX administrative programs, scripts, shells, and
standard UNIX utilities that run with administrative privilege, as a consequence of being invoked
by a user with the root identity. Non-kernel TCB software also includes daemons that provide

Final Evaluation Report: IBM RS/6000 Distributed System

11

system services, such as networking and managing audit data, as well as setuid and setgid
programs that can be executed by untrusted users.

2.5 TCB Interfaces
Each sub-section here summarizes a class of interfaces in the RS/6000 Distributed System, and
characterizes them in terms of the TCB boundary. The TCB boundary includes some interfaces,
such as commands implemented by privileged processes, which are similar in style to other
interfaces that are not part of the TCB boundary and thus not trusted. Some interfaces are part of
the TCB boundary only when used in a privileged environment, such as an administrator’s
process, but not when used in a non-privileged environment, such as a normal user process. All
interface classes are described in further detail in the next chapter, and the mechanisms in
subsequent chapters. As this is only an introduction, no explicit forward references are provided.

2.5.1 Untrusted User Interfaces
The typical interface presented to a user is the command interpreter, or shell. The user types
commands to the interpreter, and in turn, the interpreter invokes programs. The programs execute
hardware instructions and invoke the kernel to perform services, such as file access or I/O to the
user’s terminal. A program may also invoke other programs, or request services using an IPC
mechanism. Before using the command interpreter, a user must log in.

The TCB interfaces presented to the user are:

• CPU instructions, which a process uses to perform computations within the processor's
registers and a process's memory areas;

• System calls (e.g. open, fork), through which a process requests services from the kernel,
and are invoked using a special CPU instruction;

• Directly-invoked trusted processes (e.g. ENQ) which perform higher-level services, and
are invoked with an exec system call that names an appropriate program in the TCB, and
replaces the current process's content with it;

• Daemons (e.g. cron), which accept requests stored in files or communicated via other IPC
mechanisms, generally created through use of directly invoked trusted processes.

• Distributed Services, (e.g. telnet, NFS, rsh) The distributed services interface operates at
many different levels of abstraction. At the highest level, it provides a means for users on
one host to request a virtual terminal connection on another host within the system. At a
lower level, it allows a host on the distributed system to request a specific service from
another host within the system on behalf of a user. Examples of requested services include,
reading data from a designated file (i.e. NFS), executing a command line (e.g. rsh),
transfering whole files (e.g. FTP), or delivering mail (i.e. SMTP). At the lowest level, it
allows a subject on one host in the system to request a connection (i.e. TCP), or deliver
data (i.e. UDP) to a listening subject. All the distributed interfaces are TCB interfaces,
although, as noted above, some simply establish communications with a non-TCB subject.

Final Evaluation Report: IBM RS/6000 Distributed System

12

2.5.2 Operation and Administrator Interface
The primary administrative interfaces to the RS/6000 Distributed System are the same as the
interfaces for ordinary users; the administrator logs into the system with a standard, untrusted,
identity and password, and after assuming the root identity uses standard AIX commands to
perform administrative tasks.

The RS/6000 Distributed System is composed of one or more 43P, F50 or S70 RS/6000
computer systems. Each of these host computers may be in one of the following states: shut
down, initialization, single-user mode, or multi-user secure state. Administration entails the
configuration of multiple computers and the interactions of those computers, as well as the
administration of users, groups, files, printers, and other resources within the system.

The RS/6000 Distributed System provides two general purposes, menu-based utilities for system
administration: WSM and SMITTY. Other programs (e.g., /USR/BIN/ACLEDIT, /USR/BIN/CHUSER,
/USR/BIN/RM) and scripts are used for system administration, but WSM and SMITTY are significant
because they provide comprehensive system administration capabilities.

WSM and SMITTY are required for the administration of the RS/6000 Distributed System, but the
decision as to which administrative utility to use depends upon whether or not the system is in a
secure state:

• SMITTY (a cursor-based ASCII version of the System Management Interface Tool
(SMIT)) is a graphical interface and dispatcher for a collection of administrative programs.
SMITTY is used to administer the local host, i.e., the computer where it is run. It may be
used only while the computer is running in single-user mode (for example, installation or
error recovery). The basis for this limitation on the use of SMITTY is described in the
Trusted Facility Manual (TFM).

• WSM is IBM’s new-generation administrative architecture. WSM is implemented through a
client-server architecture, where the client software runs on the administrator’s local host
and the server runs on either the administrator’s local host or any other computer in the
system. The WSM server is a dispatcher for a collection of administrative programs, many
of which are the same as the programs invoked by SMITTY. WSM is included in the TCB
and, thus, may be used to administer a host while the system is in a secure state.

The system maintains an administrative database on a Network File System (NFS) server, referred
to as the administrative master server. The remaining hosts import the administrative data from
the master server through ordinary NFS client operations. Once the system is running in a multi-
user secure state, the Trusted Facility Manual requires that only Web-based System Management
(WSM) be used for system administration.

2.5.3 Secure and Non-Secure States
The secure state for the RS/6000 Distributed System is defined as a host’s entry into multi-user
mode with auditing fully operational, and with the administrative databases NFS-mounted from
the master server. At this point, the host accepts user logins and services network requests across
the distributed system. If these facilities are not available, the host is considered to be in a non-

Final Evaluation Report: IBM RS/6000 Distributed System

13

secure state. Although it may be operational in a limited sense and available for an administrative
user to perform system repair, maintenance, and diagnostic activity, the TCB is not in full
operation and is not necessarily protecting all system resources according to the security policy.

Final Evaluation Report: IBM RS/6000 Distributed System

14

3. TCB INTERFACES
This chapter describes the interfaces that together comprise the RS/6000 Distributed System TCB
interface.

It should be noted that not all the interfaces would necessarily be characterized as TCB interfaces
in the evaluated product. The following will exclude an interface as a TCB interface:

• Interfaces between elements of the TCB are not categorized as TCB interfaces unless
untrusted users or software can also invoke them.

• Calls to library functions are not TCB interfaces, because the library function is either
statically or dynamically linked with the user program, and runs as part of the same
process. Library functions may invoke system calls (which are TCB interfaces), or may be
linked with TCB programs (which may provide TCB interfaces), but the library function is
not itself a TCB interface.

• Some commands may perform TCB operations by simply invoking a system call that
performs the actual work. For example, a program may invoke the creat system call to
make a new file. In this case, it is the creat call, and not the program invoking it, which
provides the TCB interface.

3.1 User Interfaces
The user interfaces were introduced in the previous chapter. These interfaces are used directly by
system users. This section describes the interfaces in more detail.

3.1.1 Hardware Instructions
Processor instructions, described in more detail in Chapter 4, are the basic computational
mechanism available to processes on the RS/6000 Distributed System. Each process only has
access to its own set of explicitly addressable hardware registers, which are managed, by the
kernel.

3.1.2 System Calls
System calls are the mechanism for invoking kernel services and, through system calls naming
specific trusted processes or protocols, invoking all other interfaces available to local subjects. In
the AIX operating system, a system call is a routine that crosses the protection boundary between
the user process and kernel domains. System calls provide user-mode access to special kernel
functions. Because system calls run in a more privileged protection domain they can access data
that users cannot. The system call interface is the exception handler for system calls. The system
call handler, running in kernel-mode, calls the kernel internal function supporting the system call.
The system call function returns to the system call handler when it has performed its operation.
The system call handler then restores the state of the process and returns to the user program.

Final Evaluation Report: IBM RS/6000 Distributed System

15

All system calls are processed entirely within the kernel TCB software, isolating them from
external interference. System call parameters are copied by the initial system call handler, and
large data structures are copied between process memory and the kernel through routines that
ensure that all memory addressed is within the process’s assigned memory areas.

3.1.3 Directly Invoked Trusted Processes
A third class of TCB user interfaces exists between users and trusted processes. A trusted process
program is distinguished from other programs in that its program file is part of the TCB and
designated to acquire a characteristic (either the privileged identity root or a privileged group
identity such as audit) causing it to run on behalf of the TCB. For example, users changes their
passwords by running the PASSWD utility which involves a setuid program (trusted process) making
controlled changes to a TCB data file.

A process invokes a trusted process through the exec system call. Typically this is done by the
user’s command interpreter process (e.g. KSH) in response to a command issued by users or a
script. The exec system call names a program file for the process to be invoked.

When a trusted process executes, it is isolated from interference by the invoking user through one
or more of the following kernel mechanisms:

� the process may completely change identity and prevent the invoking user from sending
unwanted signals,

� the invoking user cannot trace or modify its execution using debugging services, or
� the process may set signal handlers and masks during critical regions.

3.1.4 Network Interfaces
The IBM RS/6000 Distributed System ToE is a multi-host distributed system, where each host
runs AIX Version 4.3.1 TCSEC Evaluated C2 Security, and a particular user ID refers to the
same user on each host. Each user initially logs in to a local host. (i.e., the computer that is
directly attached to the keyboard and display used by the user.) After the user logs in to the local
host, the user can run client programs that issue network requests, via the TCP/IP protocol stack,
to server processes on other hosts of the system.

TCP/IP runs as a kernel extension on each host in the system. Each host also contains TCB kernel
code (e.g., for NFS) and TCB daemons (e.g., ftpd, rshd, telnetd). All hosts implement the Berkeley
socket system calls, (e.g., socket, bind, connect).

An IP datagram contains a source address, a destination address, an Internet protocol type, and
data that is part of a higher-level protocol. Since this is a closed distributed system, network
datagrams are only received from other AIX C2 hosts. The administrator is responsible for
correctly assigning IP addresses and for not connecting the distributed system to other networks.

Typically, an IP datagram contains either a TCP segment or a UDP datagram; a third type, the
Internet Control Message Protocol (ICMP) message, is used for TCB control functions. Both TCP
and UDP identify a source port and destination port, and identify a unique subject-to-subject

Final Evaluation Report: IBM RS/6000 Distributed System

16

communication path based on the source and destination address and port. Port numbers less than
1024 are privileged ports; a privileged source port indicates a client in the TCB, and a privileged
destination port indicates a server in the TCB. In addition to ports below 1024, the RS/6000
Distributed System has the capability, through a port protection mechanism described in Chapter
5, to designate other ports as providing TCB servers and clients. The services supported by this
port protection mechanism are X Windows, WSM, and NFS.

There are no interfaces between the untrusted client process and the remote host’s hardware or
kernel. The two host kernels act as a data pipe with respect to transferring client requests and
server responses, and the untrusted user has access only to the local host’s end of the pipe.

The interface between the remote host’s server daemon and the remote host’s kernel, is considered
internal to the TCB since both are elements of the TCB.

Additional TCB interfaces consist of hardware interfaces to the adapter, software interfaces to the
local driver and TCP/IP stack, and client-server interfaces to the remote server daemon.

• Hardware interfaces to the adapter: There are four network adapters available for use
in the evaluated configuration. There are no user addressable buffers or caches included on
any of these network adapters. These interfaces are considered internal to the TCB.

• Software interfaces to the local driver: The device drivers for each network adapter
contain transmit and receive queues that are used to temporarily buffer data before it is
transmitted over the wire. These queues are internal to kernel, and are not accessible by
untrusted users. These interfaces are considered internal to the TCB.

• Socket system calls: The Berkeley socket system calls, (e.g., socket, bind, connect) act
as the user interface for network requests. These are classified under the System Call class
of TCB interfaces.

• Client-Server interfaces. These include the service protocol messages from the client
process on the local host to the server process on either a remote or local host. These
messages are typically defined in the Request for Comments (RFC) specifications for the
particular protocol. All of these are considered TCB interfaces. The TCB interfaces
presented by WSM, however, are covered as trusted processes and are not explicitly listed
as Network TCB Interfaces.

3.1.4.1 Client-Server Interfaces

The application-level interfaces constitute the majority of user-visible network functions. In all
cases the RS/6000 Distributed System can act as either a server or a client. The RS/6000
Distributed System implements the protocols according to their specifications (RFCs), and
guarantees that the service is present on the appropriate port number.

Table 3.1 lists the network application and the function they provide. Details on these protocols
can be found in Chapter 5, Network Applications.

Final Evaluation Report: IBM RS/6000 Distributed System

17

Table 3-1. Network Applications. The RS/6000 Distributed System provides network functions
through network application protocols.

Protocol Function
telnet remote login (virtual terminal)
ftp remote file transfer
smtp mail delivery
portmap map RPC protocol and version numbers to TCP

ports
rexec remote command-line execution
rlogin remote login (virtual terminal)
rsh remote command-line execution
rcp remote file transfer
lpd printer job queuing and transfer
NFS remote file access
WSM administrative server

3.1.4.2 X Windows Interface

The IBM RS/6000 Distributed System includes various X Windows clients and an X Windows
server on each host. Each server accepts connections from a client via a UNIX domain socket.

The X server directly manages the video display, keyboard, and mouse and runs as the user who
invoked it. It is not setuid/setgid and is not privileged even when invoked by an administrator. For
this reason the X server is not considered a TCB interface, as it is always either completely
external to the TCB (when invoked by an untrusted user), or completely internal to the TCB
(when invoked by a trusted user). Further details on the X Windows implementation within AIX
are provided in Chapter 5.

3.2 Administrative Interface
WSM is a Java-based point and click facility, which acts as the administrative command interface
and executes commands selected by the administrator. In order to perform administrative
functions, users must successfully assume the root identity. Non-TCB subjects protect
administrative databases from manipulation by way of normal file system access control. Where
access is restricted to owner only, and the owner is one of the restricted ids named in table 6-2.
The administrative commands rely on both kernel policy enforcement and the use of the root
identity to permit the overriding of policies normally enforced by the kernel interface.

Final Evaluation Report: IBM RS/6000 Distributed System

18

4. TCB HARDWARE
This chapter describes the security-relevant aspects of the hardware in the evaluated
configuration. It describes the CPU architecture, system board components, peripherals, hardware
components role in the security policy, hardware input/output, multiprocessing, memory
(architecture and protection), context switching and hardware equivalence.

The components of the RS/6000 Distributed System must be protected from physical tampering
as stated in the RS/6000 Distributed System TFM.

• All of the computers in the system are physically or procedurally protected from tampering
and hardware modifications (replacing EPROM chips or installing bus-monitoring
devices).

• The network wiring is physically or procedurally protected from wiretapping. This
includes both passive wiretapping, where an intruder monitors data (perhaps passwords)
passed in clear text across the network, and active wiretapping, where an intruder inserts
arbitrary data onto the wire.

• The C2 system will not be connected to any non-TCB computers or computer networks.
In particular, do not connect the system to the Internet.

4.1 CPU Architecture
The computers in the evaluated configuration use the PowerPC 604e, a 32-bit processor, or the
PowerPC RS64, a 64-bit processor. There are two separate kernels included with AIX. One
kernel is for uni-processor systems and one is for multi-processor systems. Both kernels execute
in 32-bit mode on either processor. 32-bit mode refers to the fact that the CPU uses 32-bit
effective addresses for memory accesses, and instructions and registers are 32-bits long. The
Machine Status Register (MSR) on the 64-bit processor contains a bit that determines whether
the CPU is operating in 32-bit or 64-bit mode.

The main advantages inherent with the 64-bit processor running in 64-bit mode are large file,
memory, and application virtual address spaces, and 64-bit integer computation, using 64-bit
general-purpose registers. These advantages are used through the development of applications
that execute as 64-bit processes.

Both processors are Common Hardware Reference Platform (CHRP) compliant - they are similar
to each other in design and function and adhere to a published standard. CHRP is an open systems
specification for building PowerPC-based computer systems. The specification defines the
devices, interfaces, and data formats that a CHRP-compliant platform must make visible to
software. It also describes the services that must be provided by firmware and hardware before
the operating system gains control. The CHRP document that describes the features a system
must provide to be CHRP compliant is PowerPC Microprocessor Common Hardware Reference
Platform: A System Architecture.

Final Evaluation Report: IBM RS/6000 Distributed System

19

4.1.1 Execution States
The processors in the evaluated configuration implement a two-state architecture, where kernel
mode software runs with hardware privilege (Supervisor State) and user mode software runs
without hardware privilege (Problem State). These are the only two execution states provided by
these CPUs.

In user mode, a process executes application code while the machine is in a non-privileged state.
The kernel data and global data structures are protected from access and modification. In kernel
mode, processes exist only in the kernel protection domain and run with hardware privilege. The
detailed description of the system’s memory protection mechanisms is presented in section 4.6.4,
Memory Protection.

The two-state architecture is enforced in hardware for every instruction and memory access. An
exception is generated if a user process attempts to execute a privileged instruction or access
protected memory. The distinction between user and kernel mode software is determined by the
Supervisor bit, set in the MSR. This bit can only be set by privileged software, so it is not possible
for user mode software to set the bit and give itself hardware privilege.

Table 4-1. Problem and Supervisor State Comparison.

Problem state Supervisor state
User programs and applications run in this mode The base kernel, kernel extensions, and device drivers

run in this mode
Kernel data and structures are protected from
access/modification

Can access/modify anything

Access to only user instructions Access to user and privileged instructions

There are three ways for a processor to transition from problem state to supervisor state: the
execution of the system call instruction, an exception, or an interrupt. Interrupts and exceptions
are discussed in section 4.1.3.

A user process executes the system call instruction to request services from the kernel. This is the
programming interface for user mode software to make requests of the kernel. When the system
call instruction is executed, a system call exception is generated. The processor switches to
Supervisor State to handle the exception. The effective address of the instruction following the
system call instruction is placed into the Save Restore Register 0 (SRR0). A collection of bits
from the MSR are placed into the corresponding bits of Save Restore Register 1 (SRR1). The
system call instruction passes a pointer to the system call table that identifies the system call to be
processed.

A description of the specific information that is saved and restored when a context switch occurs
can be found in section 4.7, Context Switching.

Final Evaluation Report: IBM RS/6000 Distributed System

20

4.1.2 CPU Registers
The following section describes three sets of CPU registers. The first set is composed of the
program-visible registers that an unprivileged program can manipulate through machine
instructions. The second set is visible to both user and kernel mode software, but can only be
written by the TCB while in kernel mode. The third set is accessible only by the TCB in kernel
mode and is used for system control functions.

The registers integrated into the PowerPC 604e are 32-bits long, with the exception of the
floating-point registers, which are 64-bits long. Most of the registers integrated into the PowerPC
RS64 chip are 64-bits long. Tables 4-2, 4-3, and 4-4 list the CPU registers that are contained
within each processor and their width.

When a context switch occurs, the currently executing thread on the system stores a subset of the
Problem State and Supervisor State registers. This allows the unique register values of a
particular thread to be restored when the thread next executes. Context Switching is discussed in
detail in section 4.7.

When 64-bit registers are used in 32-bit mode, the high-order 32-bits of the effective address are
ignored when accessing data and are set to zero when executing instructions. This eliminates the
problem of residual data being maintained in the register before or after a 32-bit operation is
performed on a 64-bit register. The high order bits of the 64-bit registers are not saved or restored
during a context switch, when the processor is operating in 32-bit mode.

4.1.2.1 Problem State Registers

Problem state registers are those registers that can be read and manipulated by user mode
software.

Table 4-2. Problem State Registers.

Register Description 32-bit CPU 64-bit CPU
GPRs General Purpose Registers, can hold integer or address, used for loads,

stores, and integer calculations
(32) 32-bit (32) 64-bit

FPRs Floating Point Registers, used in floating point operations (32) 64-bit (32) 64-bit
CR Condition Register, contains bits set by the results of compare

instructions
(1) 32-bit (1) 32-bit

FPSCR Floating-Point Status and Control Register, contains exception signal
bits, exception summary bits, exception enable bits, and rounding
control bits need for compliance with IEEE 754 (defines operations of
binary floating-point arithmetic and representations of binary floating-
point numbers)

(1) 32-bit (1) 32-bit

XER Contains Summary Overflow, Overflow, Carry flags and byte-count for
string operations.

(1) 32-bit (1) 32-bit

LR Link Register, set by some branch instructions, points to the instruction
immediately after the branch

(1) 32-bit (1) 64-bit

CTR Count Register, can be decremented, tested, and used to decide whether
to take a branch, all from within one instruction

(1) 32-bit (1) 64-bit

Final Evaluation Report: IBM RS/6000 Distributed System

21

4.1.2.2 Shared Registers

Shared registers are those registers that are read-only for user mode software, and read/write for
the kernel. The Time Base Facility (TB) is a pair of registers that are shared between problem and
supervisor state. The TB registers maintain the time of day and operate interval timers. User mode
software may query the TB registers, but only the kernel may affect their values.

Table 4-3. Shared Registers.

Register Description 32-bit CPU 64-bit CPU
TB Time Base Facility (TBL and TBU), operates an interval timer (2) 32-bit (2) 32-bit

4.1.2.3 Supervisor State Registers

Supervisor state registers are those registers that are only accessible by the kernel.

Table 4-4. Supervisor State Registers.

Register Description 32-bit CPU 64-bit CPU
MSR Machine State Register, controls many of the operating

characteristics of the processor (privilege level: supervisor vs.
problem, addressing mode: real vs. virtual and interrupt
enabling)

(1) 32-bit (1) 64-bit

PVR Processor Version Register, identifies the version and revision
level of the PowerPC processor (read-only)

(1) 32-bit (1) 32-bit

IBAT Instruction BAT Registers, maintain the address translation for 4
blocks of memory

(8) 32-bit (8) 64-bit

DBAT Data BAT Registers, maintain the address translation for 4
blocks of memory

(8) 32-bit (8) 64-bit

SDR1 Contains control information for page table structure (1) 32-bit (1) 64-bit
ASR Address Space Register, points to the segment table none (1) 64-bit
SR Segment Registers, used in virtual addressing mode to provide a

large virtual address space, simulated in 64-bit mode
(16) 32-bit (16) 32-bit (emulated

using the 32-bit
bridge facilities, see

4.7.1.2.2)
DAR Data Address Register, contains the memory address that caused

the last memory related exception
(1) 32-bit (1) 64-bit

DSISR Identifies the cause of DSI and alignment exceptions (1) 32-bit (1) 32-bit
SPRs Special Purpose Registers - general operating system use (4) 32-bit (4) 64-bit
SRR Machine State Save/Restore Register, these registers save

information when an interrupt occurs, SRR0 points to the
instruction that was running when the interrupt occurred, and
SRR1 contains the contents of the MSR when the interrupt
occurred

(2) 32-bit (2) 64-bit

DABR Data Address Breakpoint Register, detects access to a designated
double-word

(1) 32-bit (1) 64-bit

DEC Decrementer, used for programmable delays (1) 32-bit (1) 32-bit
EAR External Address Register, used to identify the target device for

external control operations
(1) 32-bit (1) 32-bit

IAR Instruction Address Register, or the program counter (1) 32-bit (1) 64-bit

Final Evaluation Report: IBM RS/6000 Distributed System

22

4.1.3 Interrupts and Exceptions
From a hardware perspective, a PowerPC CPU treats all interrupts to the processing flow as
hardware exceptions. One specific exception is used for all device interrupts. The purpose of
interrupts and exceptions is to allow the processor to enter Supervisor State as a result of external
signals, errors or unusual conditions arising from the execution of an instruction.

4.1.3.1 Interrupts

An interrupt is an asynchronous event not associated with the instruction being executed at the
time of the interrupt. An interrupt causes the kernel to save the thread state, execute the interrupt
handler, and eventually restore and restart the thread that was executing.

All I/O interrupts originate with a device generating an electrical signal to the hardware interrupt
controller on the I/O planar. The interrupt controller is programmed by the kernel to associate the
interrupt levels generated by the hardware devices with the corresponding software priority levels
used by AIX, where the interrupt priority is determined by the characteristics of the device.

The kernel maintains a set of structures to store context when an interrupt occurs. These
structures contain fields for all of the register values that are saved when an interrupt occurs. Each
processor in the system has a pointer to the structure it will use when the next interrupt occurs.
This pointer is called the Current Save Area (CSA).

When an interrupt occurs, the kernel saves the following registers into the CSA: instruction
address, machine status, condition, link, count, segment registers, and general purpose registers.

The kernel then gets the next available structure, links the structure that was just used to the new
structure, and updates the CSA for the processor. Interrupts each have a priority, so higher
priority interrupts can occur while a lower priority interrupt handler is executing. This results in
additional structures being allocated and linked together.

Table 4-5. MSR high-order bits. The machine status register contains the current state of the
CPU in bits 16-31 on a 32-bit processor or bits 48-63 on a 64-bit processor.

Name Description 32-bit index 64-bit index
EE External Interrupt Enable 16 48
PR Privilege Level 17 49
FP Floating-point Available 18 50
ME Machine check enable 19 51
FE0 Floating-point Exception Mode 0 20 52
SE Single step trace enable 21 53
BE Branch trace enable 22 54
FE1 Floating point Exception Mode 1 23 55
IP Exception Prefix 25 57
IR Instruction address translation 26 58
DR Data address translation 27 59
RI Recoverable exception 30 62
LE Little endian mode enable 31 63

Final Evaluation Report: IBM RS/6000 Distributed System

23

When an interrupt occurs, SRR0 maintains the effective address of the instruction that the
processor would have attempted to access next if no interrupt condition were present. SRR1
stores bits 16-31 in 32-bit mode or bits 48-63 in 64-bit mode from the MSR, which contain the
state of the processor at the time of the interrupt.

4.1.3.2 Exceptions

An exception is a synchronous event directly caused by the instruction being executed when the
exception occurs; where an exception is any condition that changes the flow of processing.
Exceptions include synchronous events caused by user programs (program errors and undefined
instructions) and system conditions, such as page faults or segment faults. The most commonly
occurring exception is a page fault.

Exception priorities are organized by exception class and are in descending order of priority:
asynchronous, synchronous, imprecise and mask-able. Exceptions may occur while an exception
handler is executing. Servicing of exceptions may be nested due to the presence of a higher
priority exception.

The evaluated CPUs provide a method of explicitly enabling or disabling particular exception
conditions. This subset of exceptions is enabled and disabled using bit values stored in the MSR.
The MSR can only be modified while the CPU is operating in Supervisor State, so the enabling
and disabling of exceptions cannot be performed by user mode software.

When an exception occurs, the processor switches to Supervisor State and immediately branches
to an exception vector. Each exception type has a defined vector that contains the memory
address of the exception handler to be executed. The effective address is stored in SRR0 before
the branch. The address is either the location of the next instruction to execute when the
exception handler returns, or the instruction that was currently executing when the exception
occurred.

The kernel determines if the process has defined a signal handler for this exception. If so, the
signal handler is invoked. If no signal handler is defined, the process is terminated according to
the default behavior that is specified for that exception.

4.1.4 Instruction Set Overview
This section presents problem and supervisor state instructions. Problem state instructions provide
the computational, branching and storage/retrieval instructions, which can be executed in problem
or supervisor state. Supervisor state instructions perform specialized functions in support of the
operating system and can only be executed when the CPU is operating in Supervisor State. If a
supervisor state instruction is issued from Problem State, the processor will generate a program
exception. The process that occurs following a program exception is detailed in section 4.1.3.2,
Exceptions.

The instruction format consists of an op-code and zero or more operands. The op-code is the
instruction to be executed, and the operands are the registers to be used by the instruction, to
achieve a result. The PowerPC architecture uses 4-byte instructions that are word aligned.

Final Evaluation Report: IBM RS/6000 Distributed System

24

The problem state instructions are broken down into the following classes.

Table 4-6. Classes of Problem State Instructions.

Class Description
Integer Integer arithmetic, compare, logical, rotate and shift instructions
Floating point Floating point arithmetic, multiply-add, rounding, conversion, compare, status,

control register and move instructions
Load and store Integer load, integer store, integer load and store with byte reverse, load and store

multiple, floating point load, floating point store, load word and reserve indexed,
store word conditional indexed, and memory synchronization instructions

Branch and flow control Branch, condition register logical, trap instructions
System linkage System call instruction
Processor control Move to/from condition register, move to/from XER, LR, CTR, move from time base
Memory synchronization Synchronize, execute in order and instruction synchronize
Memory control User level cache instructions (these instructions are described below in section

4.1.5.1)

The supervisor state instructions are broken down into the following classes.

Table 4-7. Classes of Supervisor State Instructions.

Class Description
System linkage Return from interrupt
Processor control Move to/from machine state register, move to/from PVR, IBAT, DBAT, SDR1, DAR,

DSISR, SPRs, SRRs, DABR, EAR and IAR
Memory control Supervisor level cache management, segment register manipulation, and translation look-

aside buffer management instructions

The Service Processor Attention instruction is a supervisor state instruction used by the AIX
kernel to communicate with the S70 Service Processor. The instruction is only available on the
IBM RS64 processor and is described by the following:

Table 4-8. Service Processor Instruction.

Class Description
Service Processor
Attention

When the kernel requires information from the Service Processor, it puts a request
in a buffer used to transfer data between the service processor and the kernel,
interrupts the Service Processor, and waits for a response from the Service
Processor.

4.1.5 CPU Caching
Level 1 cache (L1) is a component of the processor, and is provided to cache recently used blocks
of memory. Both the 604e and the RS64 provide separate L1 caches for instructions and data.
The 604e provides separate 32 K-byte instruction and data caches, while the RS64 provides
separate 64 K-byte instruction and data caches.

When a process references memory it refers to an effective address. The effective address is
translated into a temporary virtual address by the memory management hardware. The virtual
address is calculated by referencing the segment registers, which provide the high order bits for
the virtual address. These high order bits specify the virtual segment that this address is contained

Final Evaluation Report: IBM RS/6000 Distributed System

25

within.

When the L1 and L2 caches are referenced, the lookup is based on the virtual address. Each
virtual address belongs to only one process. The kernel assigns blocks of virtual addresses
(segments) to a process when the process is initialized. Section 4.6.2, Address Translation
describes how address translation is performed and the significance of virtual addresses.

Each page in memory has four bits that define the pages caching attributes in the page table.
These cache bits are modifiable by the VMM, and are not modifiable by user mode programs.
WIMG bits are set to the default (0010) when a page is allocated. The only modification to the
WIMG bits occurs prior to an I/O operation (0111). The bits are set to bypass any L1 or L2
caching while performing load and store operations to an adapters memory address range.

Table 4-9. WIMG bits. The WIMG bits are stored in the page-table entry for a page, and
control the implementation of caching for that page.

Cache Feature Bit = 0 Bit = 1
Write Through (W) The processor is only required to update

the cache. Main memory may be updated
due to another operation. (Write back)

Store operations update the data in the
cache and also write through to update the
data in memory. (Write through)

Caching Inhibited (I) The processor performs load and store
operations using the cache or main
memory, depending on the other cache
settings. (Cache allowed)

The processor bypasses the cache and
performs load and store operations to main
memory. (Caching Inhibited)

Memory Coherency (M) Store operations to that location are not
serialized with all stores to that same
location by all other processors that also
access the location coherently. (Memory
coherency not required)

Store operations to that location are
serialized with all stores to that same
location by all other processors that also
access the location coherently. (Memory
coherency required)

Guarded (G) Allows out of order access to memory.
(Not guarded)

Prevents out of order access to memory.
(Guarded)

4.1.5.1 User level Cache Instructions

Table 4-10. User level cache instructions. The following instructions allow a processor to
manipulate on-chip caches, within the bounds of its virtual address space.

Name Mnemonic Description
Data Cache Block
Touch

dcbt Allows a user mode program to pre-fetch cache blocks as a performance
enhancement to the execution of their program, specified by the effective
address.

Data Cache Block
Touch for Store

dcbtst Same as dcbt, except for store operations.

Data Cache Block
Set to Zero

dcbz Write zeros into a cache block specified by an effective address.

Data Cache Block
Store

dcbst Forces a write of a cache block to memory specified by the effective address.

Data Cache Block
Flush

dcbf Flushes a cache-block specified by the effective address, copying the block to
memory if there is data in it.

Instruction Cache
Block Invalidate

icbi Invalidates the block containing the byte addressed by the effective address, so
that subsequent references cause the block to be restored from real memory.

Final Evaluation Report: IBM RS/6000 Distributed System

26

User level cache instructions provide a method for a normal user program to manipulate the
cache. The following instructions are the only interfaces available to the cache for a user. There
are other cache instructions available, but those instructions are Supervisor State only. User level
cache instructions generate exceptions if they attempt an operation that violates the current
attributes for the block of memory being referenced.

4.2 System Board Components

PowerPC Processor

(L1/L2 Cache)
PowerPC Processor

(L1/L2 Cache)

System Memory Host Bridge

I/O

Device

I/O

Device

Bus

Bridge

I/O

Device

I/O

Device

Primary Processor Bus

Secondary Bus (PCI)

Tertiary Bus (ISA or PCI)

Figure 4.1: Generic Representation of a PowerPC System

Final Evaluation Report: IBM RS/6000 Distributed System

27

This section describes the motherboard components, including the buses used in the system and
the elements of the system that are contained on each motherboard. The following figure
demonstrates bus connections between the PowerPC Local Bus, the PCI bus, and the ISA bus.

4.2.1 Buses and Bridges
The systems in the evaluated configuration support three different types of buses: PowerPC Local
Bus, Peripheral Component Interface (PCI), and Industry Standard Architecture (ISA). The S70
supports an additional bus, Remote Input/Output (RIO).

The PowerPC Local Bus is a memory bus that directly connects the processor or processors to
system memory. As this is a memory bus, the only devices that are attached are memory modules
and processors or processor cards. The local bus indirectly connects the processor or processors
to the PCI bus and ISA bus via host bridges on the planar.

The PCI bus is the primary I/O bus for each of the computers, used to connect high-speed
peripherals to the planar. Some of these devices are implemented on the planar (SCSI-2
controller, bridge to ISA bus), while the remainder (LAN adapters, video adapters, and additional
SCSI controllers) are implemented as adapter cards that plug into PCI slots on the planar.

The ISA bus is a low bandwidth bus for connection of low-speed peripherals, non-volatile RAM,
audio, and power manager logic. The ISA bus supports the keyboard, mouse, parallel port, and
diskette drive.

The RIO Bus is a high-speed multiplexed I/O bus that is used to connect the S70 system rack with
its I/O drawers. The S70 system rack contains the CPU cards and memory chips. A separate
cabinet or cabinets are provided for connection of I/O devices. The RIO bus is a high-speed
extension of the PCI bus, from the system rack to the I/O drawers.

Each of the buses supported must be connected on the system planar. The chips and data paths
that connect the different buses of a system are referred to as bridges.

The hardware buses do not enforce policy. They are used to transfer data between the different
components of the system.

While there are no caches related to the system buses, there are buffers. These buffers are used in
pipelining I/O accesses, and are implemented as small FIFOs. None of these buffers are
addressable by untrusted subjects. These buffers are only manipulated using diagnostic routines.
The individual FIFOs on the system board may be turned off to isolate problems internal to the
main board.

4.2.2 System Board Elements

4.2.2.1 Level 2 Cache

Level 2 cache (L2) is a high-speed collection of memory, separate from L1 cache, but providing a
similar function. The L2 cache contains recently accessed memory locations, and is referenced

Final Evaluation Report: IBM RS/6000 Distributed System

28

following address translation to determine if the memory address is currently stored in the cache.
L2 cache is slower to access than L1, but is faster than accessing system memory directly. If a
memory location is referenced that is not in L1 or L2 cache, both L1 and L2 are updated.

The L2 cache on each of the evaluated systems is larger than the L1 cache. The 43P has 1MB of
L2 cache, directly on the planar. The F50 has 256 K-byte of L2 cache per 604e processor, for a
total of 1MB. The L2 cache on the F50 is not directly shared among the four processors. The S70
has four MB of L2 cache per processor. This L2 cache is not directly shared between the four
processors on a CPU card.

4.2.2.2 Open Firmware and Flash Memory

Open Firmware is the logic responsible for discovering the devices that are installed in the system,
passing this list of devices to the operating system, and transferring control of the hardware to the
operating system. Open Firmware is stored on a system ROM on each of the planars and is
defined by IEEE 1275-1994. When an RS/6000 system is powered on, Open Firmware has
control.

All the systems make use of a power-on password and a privileged password as a function of
system configuration. These passwords are stored and accessed while Open Firmware has control
of the machine. The RS/6000 TFM states that the privileged password must be set during the
installation process. The privileged access password controls access to the Open Firmware
settings for the machine. The power-on password is an optional feature for restricting the ability
to power on the machine. If the machine is powered off and back on, the power-on password has
to be entered to begin the boot process.

Each planar provides a minimum of 8 KB of non-volatile RAM (NVRAM). This memory is used
to store configuration data for booting the system, and is split into different Open Firmware
partitions. Each partition is either global or only available to Open Firmware. If a partition is
global, it can be read from and written to by the firmware or the kernel.

4.2.2.3 Interrupt Controller

Each system board contains a chip that provides the functionality of dual 8259 interrupt
controllers. These interrupt controllers work together in a master/slave configuration to serve the
sixteen defined ISA interrupts. The interrupt controller, implemented on the I/O chip, handles the
interrupts for the devices contained in the three PCI slots of the 43P. The F50 and S70 contain
separate interrupt controllers that handle the interrupts for the PCI devices and buses.

The F50 uses an IBM MPIC interrupt controller that is compliant with the OpenPIC Register
Interface Specification, Revision 1.0, and the S70 uses an OpenPIC interrupt controller that is
compliant with Revision 1.2. Both the MPIC and the OpenPIC connect to the dual 8259 ISA
interrupt controllers on their respective PCI-ISA bridge chips. The ISA interrupts are prioritized
at the 8259 and delivered to the MPIC or OpenPIC for processing on one interrupt line.

All the registers contained within the MPIC and OpenPIC are memory mapped. The MPIC
contains a shadow register for each processor in the system that is not software readable. This

Final Evaluation Report: IBM RS/6000 Distributed System

29

register contains what interrupt is currently being serviced and its priority, for each processor. The
shadow register is referenced by the MPIC when the MPIC is determining which processor should
handle an interrupt. Each interrupt source handled by the MPIC has a collection of registers that
maintain the priority of the interrupt and the possible destinations for the interrupt.

The OpenPIC is broken down into two separate functional units: the interrupt source unit (ISU)
and the interrupt delivery unit (IDU). The S70 contains a maximum of sixteen PCI bridges, which
requires a large number of interrupt lines. The ISU is integrated into the I/O chip that is a
component of each I/O drawer. There are sixteen interrupt lines serviced per ISU. The IDU is a
component of the RIO I/O chip, which is a component of the central electronics complex (CEC).
The RIO I/O chip is directly connected to the SMP system data bus.

4.2.2.4 Serial and Parallel Ports

The serial and parallel ports are connected via the ISA buses in all three systems. The parallel I/O
port is available on all three host computers for connection of an IBM Model 4317 printer. The
serial ports are unused on all three computers in the evaluated configuration. The RS/6000
Trusted Facility Manual states that no devices should be connected via the serial ports.

4.3 Peripherals

4.3.1 Adapters
The SCSI adapters in the evaluated configuration are either located on the system main board or
available as PCI plug-in cards. The 43P and F50 contain PCI SCSI-2 Fast/Wide adapters on
board. The S70 has no SCSI adapters on board. All three computers can support PCI Single-
Ended Ultra SCSI adapters installed in PCI bus slots.

There are four network adapters available for use in the evaluated configuration. The 43P
contains on board hardware that is equivalent to the IBM PCI 10/100 MBPS Ethernet adapter.
The F50 contains on board hardware that is equivalent to the IBM PCI 10Base5/T 10 MBPS
Ethernet Adapter. There are no user addressable buffers or caches included on any of the network
adapters in the evaluated configuration.

All the network adapters mentioned below operate as 32-bit DMA bus masters. The IBM PCI
10/100 MBPS Ethernet Adapter operates at either 10 MBPS (10BaseT) or 100 MBPS
(100BaseT) full duplex by sensing the speed of the hub connection. It connects to Category-5
unshielded twisted pair (UTP) cabling via a RJ-45 connector. The Token-Ring PCI Adapter
operates at either 4 MBPS or a 16 MBPS over a Token Ring LAN. The adapter connects to
twisted pair cabling (shielded or unshielded) via an RJ-45 connector and automatically selects the
correct LAN speed. The IBM PCI Auto LANstreamer Token Ring Adapter operates at either 4
or 16 MBPS, has an RJ-45 connector to twisted pair cabling.

There are no caches contained on the SCSI or network adapters, but there are buffers. These
buffers are used in I/O accesses, and are implemented as small FIFOs. None of these buffers are
addressable by any untrusted subject.

Final Evaluation Report: IBM RS/6000 Distributed System

30

The GXT120P is a two-dimensional graphics adapter that is used with all three models in the
evaluated configuration. The GXT120P provides a connection for the monitor, and contains two
megabytes of SDRAM used as a frame buffer. There is a FIFO available, as well as the frame
buffer, which is accessible to the user mode process that has control of the console. The graphics
adapter provides no mechanism for storing commands for later use.

The rasterizer on the graphics adapter receives commands to perform drawing operations on the
display. These commands allow solid and textured lines, short stroke vectors, polylines, bit,
pattern and image bits, rectangle solid and pattern fills, and four point trapezoid solid and pattern
fills. The rasterizer renders the drawing commands into pixels in the frame buffer. A RAMDAC
chip translates the pixel values in the frame buffer into RGB for output to the display.

Appendix A contains a list of the hardware components that comprise the evaluated
configuration.

4.3.2 Devices
The three systems provide various configurations of disk, CDROM, and tape devices, connected
to one or more of the computer’s PCI SCSI adapters. Each system must have at least one disk
drive. Each system must also have a CDROM drive, in order to execute the CDROM-based
installation.

The storage devices outlined below are not directly accessible by untrusted subjects. The
information that these devices provide is only accessible to untrusted users at the system call
interface. The kernel communicates with these devices using device drivers. Device drivers are
discussed in section 5.3.4, I/O Management. Direct access to these devices is only performed
during diagnostics, when the host is not in its secure state.

None of the SCSI devices used in the system have any user addressable caches or buffers.

Table 4-11. Devices. The following devices are included in the evaluated configuration. The
items marked Y for a column are usable on that system.

Drive 43P F50 S70
4.5 GB Ultra-SCSI Y Y Y
20x ISO 9660 SCSI CD-ROM Y Y Y
4mm SCSI tape drive Y Y Y
9.1 GB Ultra-SCSI Y N N
9.1 GB Ultra-SCSI hot-swappable disk N Y Y
4.5 GB Fast/Wide SCSI DASD N Y N
9.1 GB Ultra-SCSI DASD N N Y

The 4MM tape drive contains firmware that may be updated. This firmware contains the
microcode for the tape drive, and is updated using the DIAG command. The DIAG command sends
updates over the SCSI bus using diagnostic tape commands. The firmware for the tape drive can
also be updated using a firmware tape. The firmware update using a tape is not the normal
method of upgrade provided by IBM outside of the evaluated configuration. The TFM instructs
the administrator that it is possible to update the firmware using a firmware tape. The TFM also

Final Evaluation Report: IBM RS/6000 Distributed System

31

states that only tapes that were written on the C2 system or received in original sealed package
from the manufacturer should be used in the tape drive.

The SCSI hard disks contain firmware that may be updated. This firmware can only be updated
from the system diagnostic routines. The firmware for the SCSI CD-ROM or floppy disk cannot
be updated. The TFM states that no firmware may be updated, and that any modification of
firmware violates the integrity of the TCB.

4.3.3 Service Processors
The F50 and S70 systems include service processors. A service processor is an embedded
processor that is used in an SMP system to verify correct operation, and does not execute user
mode processes. Neither service processor is accessible by untrusted subjects.

The only interface to modify the settings for the service processor requires that an ASCII terminal
be connected to serial port one on the planar. The TFM states that no terminals should be
connected to the serial ports in the evaluated configuration, so no modifications to the service
processor configuration can take place.

The F50 service processor provides environmental regulation. If the internal temperature of the
machine rises above a predefined limit, the service processor will increase the speed of the internal
fans or shutdown the system.

The F50 service processor is physically located on the F50 planar. It is connected to the planar via
the PCI bus and communicates with the CPUs in the system via interrupts.

The S70 service processor provides environmental regulation, as well as system initialization and
an enhanced system integrity function. The S70 service processor contains the POST routines.
These routines are executed at boot time. If the tests complete successfully, the service processor
scans an initial state to the first CPU, and releases the CPU to continue the boot process.

The S70 service processor is notified on machine check exception conditions and for a set of
correctable error conditions, which it analyzes and corrects them in real time. There is a threshold
for correctable errors and if it is exceeded, the service processor will allow the machine check
condition to stand which will effectively take the machine down. If a machine check exception
occurs that can be recovered from, the service processor will stop the CPU, scan out data to
analyze a problem and scan back in corrected data. The currently executing thread does not
realize that its execution was interrupted.

The S70 service processor is physically located in the first I/O drawer. The S70 SP card contains
the Super I/O chip that handles the ISA devices. The main CPUs in the system have control of the
ISA bus. The service processor board provides the silicon space for the chip. The S70 service
processor is connected to the I/O drawer using the PCI bus, and communicates with the CPUs in
the system via interrupts.

Final Evaluation Report: IBM RS/6000 Distributed System

32

4.3.4 Miscellaneous
The floppy drive, keyboard and mouse are connected using the ISA bus. These devices are
connected to the dual-8259 interrupt controllers that are located in each system. The keyboard
includes a buffer used to transfer keystrokes to the keyboard interrupt handler.

The monitor connects to the GXT120P video adapter, and receives data from the adapter. The
monitor does not transmit any data to the adapter, nor does it offer any interfaces to facilitate
such a transmission.

The keyboard, mouse, and monitor are exclusive use devices. Only a single user at a time may use
these devices.

The operator panel display contains information about the current status of the machine. The
operator panel display on each machine is implemented as an LED display, with three characters.
The three characters are used during the boot process to report current status, and are used to
report error messages in the event of a hardware failure.

The printer is an IBM Model 4317 Printer, attached to the host’s parallel port. This printer
supports Ethernet and Token Ring interfaces, but those options are prohibited by the RS/6000
Trusted Facility Manual. The printer is a multi-user device, but only services one print job at a
time. The kernel appends a control sequence before and after each print job to clear the contents
of the printers DRAM.

Ethernet hubs and Token Ring MAUs provide the central connection point for network cables
from each host in the distributed system. These devices provide the electrical circuitry that allows
the higher-level network protocols to communicate.

Any unintelligent Ethernet hub that is similar to the IBM 8222-008 or IBM 8222-016 or
unintelligent Token Ring MAU that is similar to the IBM 8228 is acceptable in the evaluated
configuration. None of these devices provide switching or routing of network packets, and none
of these devices provide any interfaces.

4.4 Hardware Components Role in the Security Policy
Table 4-12. Device Summary. This table summarizes the I/O buses, controllers, and devices in

the ToE with respect to involvement in the security policy.

Device User-Accessible User-Programmable Residual Data
Level 1 cache Yes, but not addressable No Yes
Level 2 cache Yes, but not addressable No Yes
PowerPC bus logic No No No
PCI bus logic, bus
bridge

No No No

ISA bus logic No No No
S70 RIO Bus logic No No No
PCI SCSI-2 Adapter No No Yes
PCI SCSI Adapter No No Yes

Final Evaluation Report: IBM RS/6000 Distributed System

33

Device User-Accessible User-Programmable Residual Data
SCSI Hard Disks Yes, via file system only No Yes
SCSI CDROM Yes, but only via file system.

Install script changes rights to
device file to prevent access.

No No

4mm SCSI Tape No, the install script changes
rights on device file so access is
limited to root.

No Yes

Diskette No, as follows: TFM guidance not
to mount file system from floppy.
The install script changes rights on
device file so access is limited to
root.

No Yes

GXT120P 2-D
Graphics Adapter

Yes, frame buffer mapped directly
into user process

Yes, the RCM maps in
whatever registers (or
more generally
command FIFOs) are
required for rendering.

No

Monitor Yes Not programmable at
all, except for features
such as brightness,
contrast, and screen
size.

No, the login prompt clears
the screen of data from the
previous session. It outputs a
large number of new lines
before showing the login
prompt.

LAN Adapters Yes. Users may send TCP/UDP
messages, but cannot send or read
raw packets, or create raw sockets.

No Yes, but data is not
accessible by subsequent
users.

Keyboard Yes No No
Mouse Yes No No
Operator Panel
Display

Yes No Minimal

Service Processors
(F50 and S70)

The Service Processor requires the
privilege access password to view
or make changes, and only
provides an ASCII terminal
interface through serial port one.
The TFM forbids the use of an
ASCII terminal to access service
processor configuration.

No Yes, but does not provide an
interface for administrative
or non-administrative users.

IBM Model 4317
Network Printer

Yes. A user may submit a print job
for a specific printer.

Yes No. The kernel sends a
control sequence at the
beginning and end of each
job to clear the printers
buffer.

Serial ports No (TFM warning not to connect
anything to serial ports)

No No

Parallel port Yes No No
Firmware No No No
Power Management
HW

Indirectly, by stopping input and
letting the host enter sleep mode.

No No

Final Evaluation Report: IBM RS/6000 Distributed System

34

4.5 Hardware Input/Output
Hardware I/O is patterned after the same architecture on all three machines, and is performed
through memory mapped access to adapters and associated registers. There are no user mode I/O
instructions on the 604e or RS64. Areas used in hardware I/O are under the control of the TCB
until an interrupt signals completion, and the kernel allows a thread to continue execution.

When Open Firmware begins to initialize the system, it probes the various PCI buses in the system
and creates a device tree with all the relevant information concerning memory addresses in use by
the various adapters. This device tree is transferred to AIX during the boot process, and defines
which device drivers can be loaded.

Each system contains at least one PCI bus for connecting adapters. A PCI host bridge is used to
connect the PCI bus to the memory I/O controller. The PCI Host Bridge determines the bus
memory space, the bus I/O space, and the PCI configuration space. The PCI configuration space
is populated by Open Firmware, using the PCI slot and direct lines on the system board.

Programmed I/O is used for slower ISA devices, such as the keyboard and mouse. When one of
these devices has data to send, it generates an interrupt. During the execution of the interrupt
handler, the single character is received and acted on accordingly.

Device drivers in the kernel perform DMA. DMA reads and writes to memory addresses are
performed using real addresses. The real addresses are mapped into the real address space during
system initialization.

There are two different types of I/O devices in the evaluated configuration: those with fixed
address assignments and those with programmable base registers. The fixed address devices are
basic devices needed for the overall operation of the system. An example of a fixed address device
is the interrupt controller. The memory addresses of fixed devices are hard-wired into the system.
The programmable devices are configured with a base address that determines the starting address
for the adapter’s memory range.

During system initialization, each PCI adapter card is probed to determine how much of its
adapter memory is addressable. This memory includes any memory-mapped registers or buffers.
Each adapter has a base address register that determines the base memory address for the adapter.
The base address is the address in the real address space where this adapter’s range begins. The
kernel’s I/O subsystem communicates with the adapter using a real memory address in this range.
This portion of the address space is not managed by the VMM, because there are no physical
pages of memory associated with the memory addresses.

DMA operations can be performed by the kernel internally or directly to a page in the users
address space. Any process that is receiving the results of a DMA operation in a page of their
address space must have that page hidden and pinned by the kernel. This prevents the page from
being swapped out or viewed when the kernel is copying data, possibly leaving the memory
location in an inconsistent state.

Final Evaluation Report: IBM RS/6000 Distributed System

35

AdapterBuffer

DMA
Controller

Device Driver

Top Half

Bottom Half

mbuf
(256 bytes)

mbuf
(256 bytes)

mbuf
(256 bytes)

PCI Bus

Interrupt
Controller

2

3

4,5

1

Figure 4.2: DMA Operation for an Ethernet Receive

1. The Ethernet adapter generates an interrupt when it receives a packet from the wire.
2. The top-half of the device driver maintains a pool of kernel memory buffers (mbuf). When

the interrupt is received, the top-half of the device driver allocates memory buffers for this
transfer and pins them in memory. The device driver itself knows the number of memory
buffers to allocate. In this example, the Ethernet adapter has an MTU size of 1500, so a
linked list of mbufs are allocated to contain 1500 bytes.

3. The bottom-half of the device driver passes the DMA controller a pointer to the mbuf
chain and configures the DMA controller registers to pick up the data contained on the
Ethernet adapter buffer.

4. The DMA controller performs the DMA operation, moving the contents of the Ethernet
buffer to the mbufs.

5. The DMA controller generates an interrupt when the operation is complete. The bottom-
half of the device driver releases the mbufs to the device driver’s pool.

When the kernel has a packet to send, the top-half of the device driver sets up the DMA
controller for the operation, and configures the adapters memory mapped registers to prepare the
adapter to receive the packet.

Final Evaluation Report: IBM RS/6000 Distributed System

36

The only difference in the above scenario for different types of adapters is the size of the buffers
and the location of the buffers within the kernel address space. Different adapters use buffers from
other sources, such as pages managed by the VMM being used for disk I/O.

Processor

604e

L2 cache

Memory I/O
controller

PCI bridge

SDRAM memory cards

Figure 4.3: 43P Overview Diagram

The 43P provides one single PCI bus, connected to the Memory I/O controller.

Final Evaluation Report: IBM RS/6000 Distributed System

37

Processor

604e

Processor

604e

Processor

604e

Processor

604e

L2 cache L2 cache L2 cache L2 cache

Memory I/O
controller

PCI bridge PCI bridge PCI bridge

PCI I/O buses

SDRAM memory cards

Figure 4.4: F50 Overview Diagram

The PowerPC Local Bus on the F50 connects the four processors and L2 caches. The I/O bridge
bus connects the PCI I/O bridges with the Memory I/O controller unit. The PCI Bridge chips each
support one PCI bus.

The S70, see figure 4.5, is implemented as separate racks for the processors (CEC) and the I/O
drawers. Each I/O drawer has four PCI bridges, for a total of fourteen PCI slots per drawer. One
of the PCI bridge chips drives two 64-bit PCI slots, while the other three each drive one 64-bit
PCI slot and three 32-bit PCI slots. The PCI bridges are connected into the I/O Bridge, which
connects to the I/O Hub in the system rack. The I/O Bridge acts as a converter from PCI to RIO,
and the I/O hub on the system rack side converts from RIO back to PCI.

Final Evaluation Report: IBM RS/6000 Distributed System

38

IOBrg

P3P3P3P3

Located in I/O Drawer #1

Located in CEC Rack

DataFlow
Control

I/O Hub
DataFlow Switches

IOBrg

P3P3P3P3

Located in I/O Drawer #2

IOBrg

P3P3P3P3

Located in I/O Drawer #3

IOBrg

P3P3P3P3

Located in I/O Drawer #4

SDRAM Memory
128MB - 1GB

SDRAM Memory
128MB - 1GB

RIO Bus

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

L2

RS 64

Figure 4.5: S70 Overview Diagram

4.5 Multiprocessing
Two models included in the evaluation contain multiple processors: the F50 and S70. The F50 is a
four-way SMP machine, using the 604e processor and the S70 is a twelve-way SMP machine,
using the RS-64 processor. The S70 processors are contained on three separate CPU cards, each
containing four processors.

The hardware definition of SMP is that all processors have equal access to system memory. The
F50 and S70 implement the sharing of system memory through the use of the PowerPC Local
Bus. Each CPU in both systems connects to this bus.

Cache coherence is maintained using the MESI four-state cache coherency protocol. This cache
protocol is referred to as four-state because each cache block in the data cache is in one of the
four states. The instruction caches do not implement the MESI cache coherency protocol, but
instead uses a single state bit to control whether the instruction block is valid or not.

Final Evaluation Report: IBM RS/6000 Distributed System

39

The MESI cache coherency uses a broadcast technique to maintain a coherent memory system.
Each processor must broadcast it’s intention to read a cache block not in the cache, and must also
broadcast it’s intention to write into a block that is not owned exclusively. Other processors or
devices respond by searching their own caches and reporting back status to the originating
processor. The response will either be a shared indicator or a retry indicator. A shared indicator
specifies that the processor is also using that particular cache block. A retry indicator specifies
that the processor has either a copy of the cache block it needs to return to system memory or a
queuing problem occurred that prevented the processor from doing the proper snooping
operation.

Table 4-13. MESI Cache Coherency Protocol. MESI is a technique to maintain a coherent
memory system on a multiprocessor system.

MESI State Definition
Modified (M) This block of memory is only valid in this cache. The block has been modified from system

memory, and has not yet been written back.
Exclusive (E) This block of memory is in this cache only. The data is consistent with system memory.
Shared (S) This block of memory is valid in the cache and in at least one other cache. The shared state is

shared-unmodified. There is no shared-modified.
Invalid (I) This block of memory is not resident in the cache and/or any data contained is considered not

useful.

The interrupt controllers in the F50 and S70 distribute interrupts to the collection of CPUs. The
specifics about each interrupt controller are contained in section 4.2.2.3, Interrupt Controller.

When an interrupt is generated in the multiprocessor environment, the interrupt controller checks
the priorities of all the processors. The interrupt is routed to the processor that has a priority level
allowing it to service the interrupt. Interrupts can be nested if a processor is servicing an interrupt,
and an interrupt of higher priority is routed to it. The current lower priority interrupt will be saved
and the higher priority interrupt will be processed.

4.6 Memory Architecture
The memory management tasks of each host in the system are split between the hardware and
software. The hardware translates effective addresses to physical addresses and protects pages,
segments, and blocks of memory. The software aspects of memory management are discussed in
section 5.3.1, Memory Management.

4.6.1 Segmentation
The memory management architecture of the two processors is based on a segmented memory
model. A segment is a 256MB piece of virtual memory containing 65,536 pages, each 4096 bytes,
and configured through a segment descriptor. Pages are described in section 4.6.3, Paging.

Final Evaluation Report: IBM RS/6000 Distributed System

40

4.6.1.1 32-Bit Segmentation

There are sixteen segment registers in the PowerPC 604e processor. The segment registers define
a collection of properties about the segment, including the virtual memory segments that make up
the process address space.

The kernel can modify the segment registers, using the move to segment register and move from
segment register instructions. User mode software is unable to modify the segment registers
because the move to segment register (mtsr) and move from segment register (mfsr) instructions
are supervisor mode instructions. This prevents a user mode process from directly changing which
segments make up the process’ address space.

Table 4-14. Segment Register Format. Each segment register contains a format bit, a
collection of protection bits, and a Virtual Segment ID.

T Ks Kp N Reserved VSID
0 1 2 3 4-7 8-31

Table 4-15. Segment Register Fields. The segment register contains the following fields.

Field Description
T Selects the format of the segment descriptor (0 = page address translation)
Ks Supervisor state protection key
Kp User-state protection key
N No-execute protection bit

VSID Virtual Segment ID

4.6.1.2 64-Bit Segmentation

The RS-64 processor can be operating in either 32-bit or 64-bit mode. The AIX kernel always
runs in 32-bit mode. 64-bit mode is only used for 64-bit processes. The MSR contains a bit that
determines the current mode: 32 or 64 bit.

4.6.1.2.1 64-Bit Mode

The segments that make up a 64-bit process executing on the RS64 processor are cached in the
segment table and a Segment Look-aside Buffer (SLB), and are directly referenced through the
process context. The RS-64 processor provides two separate SLBs: a four entry instruction SLB
and an eight entry data SLB. The SLB is an on-chip cache of the segment table, and is used
during the effective to virtual address translation process.

64-bit processes use an array to keep track of what segments the process is using. The array of
segments is stored in the process private segment. This area of the process private segment is only
available to the kernel. One instance of the segment table exists for each 64-bit process. The
segments that make up a 32-bit or 64-bit process are discussed in section 5.3.2.1, Typical Process
Address Space.

Final Evaluation Report: IBM RS/6000 Distributed System

41

Table 4-16. Segment Table Entry and SLB Format. The segment table provides a cache of the
256 most recently used effective segment ids to virtual segment ids. The SLB caches a subset of

the current segment table on-chip.

ESID Reserved V T Ks Kp N VSID Reserved
0-35 36-55 56 57 58 59 60 0-51 52-63

Table 4-17. Segment Table Entry and SLB Format. Each segment table entry contains an
effective segment id, a format bit, a collection of protection bits, and a Virtual Segment ID.

Field Description
ESID Effective Segment ID

V Entry valid if V=1
T Selects the format of the segment descriptor (0 = page address translation)
Ks Supervisor state storage key
Kp Problem state storage key
N No-execute protection bit

VSID Virtual Segment ID

4.6.1.2.2 32-Bit Mode

The address translation unit hardware provides a level of abstraction for memory management
operating in 32-bit mode on the 64-bit processor. When the kernel sets up a 32-bit process’
address space on the 64-bit processor, it uses the same instructions to move to and from segment
registers as are used on the 32-bit 604e.

The 64-bit processor uses a 32-bit Bridge to emulate the segment registers. The 32-bit bridge is
transparent to the kernel and is included to facilitate PowerPC operating system vendors who are
transitioning from 32-bit to 64-bit kernels. By using the abstraction provided by the 32-bit Bridge,
IBM did not have to move to a 64-bit kernel to support the RS-64.

When the 64-bit CPU is operating in 32-bit mode, the SLB is used to represent the sixteen
segment registers that make up the process address space. These segment registers are referred to
as virtual, because they do not store the same exact values as the 32-bit segment registers. The
virtual segment register mappings contained within the SLB use the same structure as 64-bit
mode.

4.6.2 Address Translation
There are three types of addresses used in memory management: real, effective and virtual. Real
addresses point to the actual, physical memory location being addressed; effective addresses are
32-bit or 64-bit addresses specified for load, store, or instruction fetches. Virtual addresses are
temporary addresses used to translate effective addresses into real addresses.

Effective addresses are not unique. Each process begins execution of a program at the same
effective address. When a process requests an instruction using an effective address, a virtual
address is used to translate to a real memory address. This virtual address contains the virtual
segment ID, which is the segment that contains this effective address. Virtual addresses and
virtual segment IDs are unique for user mode process segments that are not shared (process

Final Evaluation Report: IBM RS/6000 Distributed System

42

private segment). For a discussion of the processes address space and how some segments are
shared, see section 5.3.2.1, Typical Process Address Space.

The Translation Look-aside Buffer (TLB) used with each processor is a cache for the most
recently used page table entries. The 32-bit and 64-bit implementations of the TLB use the same
format as the page table entries. The 604e and RS64 each have separate TLBs for instructions and
data. The 604e TLBs hold 128 entries each, while the RS64 TLBs hold 512 entries each.

Effective Address

0 31

Physical Address

0 31

Physical Address

0 31

Physical Address

0 31

Match with
BAT registers

Segment Descriptor
Loaded

Virtual Address

0 51

Look Up in
Page Table

Address Translation Disabled

MSR[IR] = 0 or
MSR[DR] = 0

Real Addressing
Mode Effective

Address = Physical
Address

Block Address
Translation

Page Address
Translation

Figure 4.6: Address Translation - General Overview

4.6.2.1 32-bit Address Translation

32-bit address translation is the process of translating 32-bit effective addresses to 32-bit real
addresses. To make this translation, 52-bit virtual addresses must be derived.

Final Evaluation Report: IBM RS/6000 Distributed System

43

Figure 4.7: Address translation overview (32-bit implementations)

The PowerPC 604e processor’s effective address is made up of three parts: the segment register
number, the page number within the segment, and the byte offset within the page. The segment
register number points to a segment register containing the Virtual Segment ID (VSID). Each
segment register defines a 256MB piece of the process’ virtual address space. The VSID and a
hashed page index are referenced in the L1/L2 cache, the TLB and the hardware page frame table
searching for a match. The byte offset within the page is carried from the effective address and
inserted into the real address. If a match is not found in the L1/L2 cache, the TLB, or the
hardware page frame table, a data storage interrupt is generated and the VMM takes over.

32-bit address translation on the 64-bit hardware is identical in function to the 32-bit hardware.
Figure 4.7 is accurate for 32-bit address translation on both the 32-bit and 64-bit hardware. The
64-bit CPU provides additional hardware and structures that are used with the 32-bit CPU, but
this additional hardware is not visible to the kernel.

4.6.2.2 64-bit Address Translation

64-bit address translation is the process of translating 64-bit effective addresses into 64-bit real
addresses. To make this translation, 80-bit virtual addresses must be derived.

SR Page Byte

4 16 12

Virtual Segment ID Page Byte

24 16 12

Real Page Number Byte

20 12

Lookup

Select

Hardware
PFT

16 Segment
Registers

32-bit Effective Address

52-bit Virtual Address

32-bit Real Address

TLB

L1/L2

Final Evaluation Report: IBM RS/6000 Distributed System

44

Figure 4.8: Address translation overview (64-bit implementations)

The PowerPC RS64 processor’s effective address is made up of three parts: the effective segment
ID, the page number within the segment, and the byte offset within the page. The effective
segment ID is looked up in the on-chip SLB and Segment Table to produce a Virtual Segment ID
(VSID). If the ESID is not found in the Segment Table or the on-chip SLB, a segment fault
occurs. The VMM searches the process context structure containing the effective segment ID to
VSID mappings and updates the segment table and SLB if a match is found. The VSID and a
hashed page index are referenced in the L1/L2 cache, the TLB and the hardware page frame table
searching for a match. The byte offset within the page is carried from the effective address and
inserted into the real address. If a match is not found in the L1/L2 cache, the TLB, or the
hardware page frame table, a data storage interrupt is generated and the VMM takes over.

4.6.2.3 Block Address Translation

Block address translation (BAT) maps ranges of effective addresses that are not subject to paging
into contiguous areas of real memory. Block address translation uses a different breakdown of the
bits of the effective address. The last seventeen bits of the effective address are used to specify the
offset within the block, while the first fifteen bits define the location of the block in the effective
address space. The first fifteen bits are translated to the real address of the block, which is
concatenated with the 17-bit offset. See figure 4.9.

Effective Segment ID Page Byte

36 16 12

Virtual Segment ID Page Byte

52 16 12

Real Page Number Byte

52 12

Lookup

LookupSegment
Table

64-bit Effective Address

80-bit Virtual Address

64-bit Real Address

SLB

Hardware
PFT

TLB

L1/L2

Final Evaluation Report: IBM RS/6000 Distributed System

45

Figure 4.9: Block Address translation (32-bit implementations)

Block address translation is controlled by BAT register pairs. The BAT registers are supervisor
state registers, so they are not modifiable by untrusted users. The kernel and device drivers use
BAT to translate their address space to physical memory. If the BAT registers are mapped for an
effective address, the translation will succeed if either the MSR indicates that the CPU is
operating in Supervisor State or the protection bits are set to allow user mode access to the block.

Table 4-18. Upper BAT Register Format. The Upper BAT register contains the effective page
index, the BAT length, and the supervisor and problem state valid bits.

BEPI Reserved BL Vs Vp
0-14 15-18 19-29 30 31

Table 4-19. Lower BAT Register Format. The lower BAT register contains a field used with
BL from the upper BAT register to generate the high order bits of the physical address of the

block, the cache control bits, and the protection bits for this block.

BRPN Reserved WIMG Reserved PP
0-14 15-24 25-28 29 30-31

The 4-bit segment register designation is ignored for block address translation. The block size
mask is subtracted from bits 4-14 to strip away the high order bits of the effective address. The
result is added with the high order bits stored in the block real page number. The first 4 bits of the
block RPN provide additional high order bits. The 17-bit offset within the block is carried from
the effective address to the real address.

4 11 17

11 17

Block Size Mask

32-bit Effective Address

32-bit Real Address

128KB to 256MB AND

4 11

OR

4 11 17

Block RPN from BAT register

Final Evaluation Report: IBM RS/6000 Distributed System

46

This mechanism is available to user-mode processes, provided the kernel sets up the BAT
registers. The video adapter driver uses BAT register pairs to map video data into a user’s process
address space.

4.6.3 Paging

Table 4-20. Page Table Entry Format, stored in the Hardware Page Frame Table, Word 0
and Word 1 (32-bit). The page table tracks the pages that are in use and a number of attributes

associated with each page.

V VSID H API
0 1-24 25 26-31

RPN Reserved R C WIMG Reserved PP
0-19 20-22 23 24 25-28 29 30-31

Table 4-21. Page Table Entry Format, stored in the Hardware Page Frame Table, Word 0
and Word 1 (64-bit). The page table tracks the pages that are in use and a number of attributes

associated with each page.

VSID API Reserved H V
0-51 52-56 57-61 62 63

RPN Reserved R C WIMG Reserved PP
0-51 52-54 55 56 57-60 61 62-63

 Table 4-22. Page Table Entry Fields (32-bit and 64-bit). The page table tracks the pages that
are in use and a number of attributes associated with each page.

Field Description
V Entry valid if V=1
VSID Virtual Segment ID
H Hash function identifier
API Abbreviated page index
RPN Physical page number
R Referenced bit
C Changed bit
WIMG Memory/cache control bits
W Write-Through Attribute
I Caching-Inhibited Attribute
M Memory Coherency Attribute
G Guarded Attribute
PP Page protection bits

Paging is the mechanism of swapping small pieces of memory in and out of real memory to create
a larger virtual address space. A page is a 4096 byte unit of memory. When a piece of memory is
swapped out, it is placed on paging space. Paging space is a disk area used by the memory
manager to hold inactive memory pages. Both hardware and software implement paging.

Final Evaluation Report: IBM RS/6000 Distributed System

47

4.6.4 Memory Protection
The memory protection mechanisms used in the system provide similar protection schemes for
segments, pages and blocks. The memory management hardware protects supervisor areas from
untrusted user access and designates areas of memory as read-only or read-write.

4.6.4.1 Segment Protection

Only privileged software in the kernel can load the segment registers that define the process
address space. A process cannot attempt to access memory that is not in one of its segments,
because the segment registers are used to determine the real address being referenced, and only
the kernel can modify the values in the segment registers.

The Supervisor State protection key (Ks) or the Problem State protection key (Kp) is combined
with the protection bits (PP) to determine page level access. Section 4.6.4.2, Page Protection
explains how protection keys and protection bits combined determine the page access level. The
No-execute protection bit (N) is architecturally defined and present in both processors, but is not
used by AIX.

4.6.4.2 Page Protection

The page memory protection mechanism provides access to a page in memory for supervisor state
or problem state software. The PP bits are stored in the Page Table Entry (PTE) for a particular
page. Each page access check references the current state of the machine as defined in the MSR,
the supervisor or problem state protection keys and the page protection bits to determine if the
access is allowed. Page memory protection cannot be used to provide access for individual users.

Memory access checks are performed by the MMU in hardware. Following the successful
translation of a memory address, the MMU checks the protection key and the page protection
bits. If the access is disallowed, an exception is generated by the hardware and the access is not
granted. The kernel does not perform the access check for memory.

Table 4-23. Protection Key and Page Protection.

Ks or Kp Page Protection Bits Page Access
0 00 Read/Write
0 01 Read/Write
0 10 Read/Write
0 11 Read Only
1 00 No Access
1 01 Read Only
1 10 Read/Write
1 11 Read Only

4.6.4.3 Block Protection

The BAT registers for the 32-bit and 64-bit processors each contain a Supervisor mode bit, a
User mode bit, and two protection bits. When either the supervisor or user bits are enabled, the

Final Evaluation Report: IBM RS/6000 Distributed System

48

two protection bits determine access rights to the memory address block. The result is access to
the specific block or an exception.

4.6.4.4 Protection Violation

A protection violation occurs when a user or supervisor attempts to read or write to a memory
address that they do not have access to. When a protection violation occurs, an ISI exception is
generated if the address was being translated for an instruction access. A DSI exception is
generated if the address was being translated for a data access.

4.7 Context Switching

4.7.1 Registers and Threads
Each thread that runs on the system saves the contents of its hardware registers when a context
switch occurs. The registers are stored in a structure that is part of the thread context, accessible
from the process table entry for that process and managed by the kernel. A context switch may
also occur when an interrupt saves the state of the machine and executes its handler. Interrupts
are described in section 4.1.3, Interrupts and Exceptions.

When a context switch occurs, the resident values of the CPU registers are overwritten by the
values of the incoming thread, negating the chance of any residual data being saved in a CPU
register.

The following registers are stored within the context of a 32-bit thread: instruction address,
machine state, condition, link, count, floating-point status, segment registers, general purpose
registers, and floating point registers. A 64-bit process does not save segment registers, since they
do not exist in this context, and adds the address space register.

4.7.2 Floating Point and Threads
The status of the floating-point registers is not saved each time a context switch occurs. One
thread at a time has ownership of the floating point registers on a processor. A field contained
within the per-processor data area (PPDA) determines the ownership. The PPDA is a per-
processor kernel structure.

A bit in the MSR determines whether the current thread can execute floating-point instructions. If
a thread does not have this bit enabled, and attempts to execute a floating-point instruction, a
floating-point unavailable exception is generated.

On a single processor system the floating-point unavailable handler saves the values for the
floating-point registers to the owning thread, assigns ownership of the FP registers to the current
thread, and returns to retry the instruction. On a multiprocessor system, the FP register values are
always saved. The floating-point unavailable handler enables the bit to allow floating-point
instructions to be executed and returns to retry the instruction.

Final Evaluation Report: IBM RS/6000 Distributed System

49

4.7.3 Cache
The L1, L2 and TLB caches are not cleared when a context switch occurs, so the L1 and L2
caches may contain cache-lines from a previous process, and the TLB may contain page table
entries from a previous process. The currently executing user process cannot generate a virtual
address that points outside of their process address space. The currently running process
overwrites the values stored in the cache from the previous process.

4.8 Hardware Equivalency
There are no security relevant differences between the PowerPC 604e and PowerPC RS64
processors. The domain separation model is conceptually the same. There are slight differences
between the processors with respect to segmentation, instruction sets, and supported peripherals,
but there are no significant differences between the two architectures from a security relevance
perspective. These two processors are functionally equivalent.

The SCSI adapters all provide a connection between the I/O hardware on the system board and
SCSI devices. The implementation of Ultra-SCSI versus Fast/Wide-SCSI provides no security
relevance. Ultra-SCSI contributes faster transfer rates than Fast/Wide. The absence of any
untrusted user addressable buffers or caches further abstracts the individual SCSI adapters as
devices that provide I/O. The SCSI devices differ in the amount of disk space they provide, and
their implementation of a particular SCSI standard (Ultra versus Fast/Wide).

The network adapters provide an interface for the kernel to the network cabling. The distinction
between token ring and Ethernet is quite different, but not security relevant. Token ring uses a
token system to determine which network adapter has the ability to send packets in a given time
frame, and Ethernet uses a broadcast mechanism. These differences are not security relevant, as
they just define the mechanism for packets to be transferred. The use of the promiscuous mode of
Ethernet is controlled by the kernel on each individual host, blocking any access an untrusted user
may have to broadcast network traffic. None of the network adapters contain any untrusted user
addressable buffers or caches.

Final Evaluation Report: IBM RS/6000 Distributed System

50

5. TCB SOFTWARE
This chapter presents the general structure of the RS/6000 Distributed System Trusted
Computing Base (TCB) software, identifies TCB software components, and summarizes the
operation of each. The descriptions in this chapter concentrate on functional properties. Although
protected resources and security policies are mentioned here, complete descriptions are in the two
following chapters. This chapter begins with a general characterization of TCB software classes
then describes each major TCB software component.

5.1 TCB Structure
This section identifies the major classes of software components, and describes the structuring
mechanisms by which they are organized. Because isolation and protection are critical to the
reference monitor concept, those aspects of the TCB are discussed first, followed by actual
software descriptions. Although this introduces numerous concepts not explained until later in the
chapter, it serves as a bridge to the descriptions that will follow.

5.2 TCB Definition
The AIX TCB software is defined as all the software that either is responsible for implementing
the security policy, or that could affect correct operation of the security policy.

TCB components are further classed as significant or non-significant, depending on whether they
have direct responsibility for implementing or enforcing the security policy. Because the AIX
TCB is in no sense minimal, the TCB contains many components that are present for functional
reasons or programming convenience, and are not strictly necessary for implementation of the
security policies. Those components (for example: utilities, libraries, I/O device drivers) are the
non-significant ones, and are mentioned here only when they are crucial to understanding the
system’s architecture. They are trusted to function correctly to the extent that they do not contain
malicious code and do not affect the correct operation of the security mechanisms.

5.2.1 TCB Isolation Argument
This presents the TCB isolation or reference monitor argument, which is recapitulated in the
System Architecture requirement section in Chapter 9. This argument shows that, to the degree
appropriate for the TCSEC C2 level of trust, the RS/6000 Distributed TCB is tamper-resistant
and always invoked.

The RS/6000 Distributed System TCB is tamper-resistant because all TCB programs, data, and
other components are protected from unauthorized access via numerous mechanisms. The
security policies are described further in Chapter 7, and architectural aspects of TCB protection
are described later in this chapter.

Final Evaluation Report: IBM RS/6000 Distributed System

51

To an extent, the kernel is functionally organized. There are separate source code files or
groupings of source code that contain the programs that implement specific kernel functions (e.g.,
file system, process management). However, this separation is a design abstraction, and data
structures are not strictly isolated.

All kernel software has access to all areas of memory, and the ability to execute all instructions. In
general, however, only memory containing kernel data structures is manipulated by kernel
software. Parameters are copied to and from process storage (i.e. that accessible outside the
kernel) by internal mechanisms, and those interfaces only refer to storage belonging to the process
that invoked the kernel (e.g., by a system call).

5.2.1.1 TCB Protection

While in operation, the kernel TCB software and data are protected by the hardware memory
protection mechanisms described in Chapter 4, section 4.1.1, Execution States and section 4.6.4,
Memory Protection. The memory and process management components of the kernel ensure a
user process cannot access kernel storage or storage belonging to other processes.

Non-kernel TCB software and data are protected by DAC and process isolation mechanisms. In
the evaluated configuration, the reserved user ID root, or other reserved IDs equivalent to root,
owns TCB directories and files In general, TCB files and directories containing internal TCB data
(e.g., audit files, batch job queues) are also protected from reading by DAC permissions.

The TCB hardware and firmware components are required to be physically protected from
unauthorized access. The system kernel mediates all access to the hardware mechanisms
themselves, other than program visible CPU instruction functions.

The boot image for each host in the distributed system is adequately protected. A description of
the boot logical volume can be found in section 5.3.16, Initialization and Shutdown.

5.2.1.2 TCB Invocation Guarantees

All system protected resources are managed by the TCB. Because all TCB data structures are
protected, these resources can be directly manipulated only by the TCB, through defined TCB
interfaces. This satisfies the condition that the TCB must be "always invoked" to manipulate
protected resources.

Resources managed by the kernel software can only be manipulated while running in kernel mode.
Processes run in user mode, and execution in the kernel occurs only as the result of an exception
or interrupt. The TCB hardware and the kernel software handling these events ensure that the
kernel is entered only at pre-determined locations, and within pre-determined parameters. All
kernel managed resources are protected such that only the appropriate kernel software
manipulates them.

Trusted processes implement resources managed outside the kernel. The trusted processes and
the data defining the resources are protected as described above depending on the type of
interface. For directly invoked trusted processes the program invocation mechanism ensures that

Final Evaluation Report: IBM RS/6000 Distributed System

52

the trusted process always starts in a protected environment at a predetermined point. Other
trusted process interfaces are started during system initialization and use well defined protocol or
file system mechanisms to receive requests.

5.2.2 Relationship to UNIX Systems
Because the RS/6000 Distributed System is derived jointly from System V and Berkeley versions
of the UNIX system, it has a structure much like them: privileged kernel and processes, some
trusted, some not. The primary novel aspects of the system are in the area of a dynamically
extensible kernel, support for real-time processing, and enhancements to the traditional system
management paradigm. These are discussed throughout the report as they become relevant.

5.2.3 Kernel
The RS/6000 Distributed System software consists of a privileged kernel and a variety of non-
kernel components (trusted processes). The kernel operates on behalf of all processes (subjects).
It runs in the CPU’s privileged mode and has access to all system memory. All kernel software,
including kernel extensions and kernel processes, is part of the TCB. The kernel is entered by
some event that causes a context switch such as a system call, I/O interrupt, or arithmetic error.
Upon entry the kernel determines the function to be performed, performs it, and, when finished,
performs another context switch to return to user processing (possibly on behalf of a different
subject).

The kernel is shared by all processes, and manages system wide shared resources. It presents the
primary programming interface for the RS/6000 Distributed System in the form of system calls.
Because the kernel is shared among all processes, any process running "in the kernel" (that is,
running in privileged hardware state as the result of a context switch) is able to directly reference
the data structures that implement shared resources.

The major components of the kernel are memory management, process management, the file
system, the I/O system, and the network protocols (IP, TCP, UDP, and NFS).

5.2.4 Kernel Extensions
Kernel extensions are dynamically loaded code modules that add function to the kernel. They
include device drivers, virtual file systems (e.g., NFS), inter process communication methods (e.g.,
named pipes), networking protocols, and other supporting services. Kernel extensions can be
loaded only at system boot in the evaluated configuration.

Kernel extensions run with kernel privilege, similarly to kprocs. However, extensions differ from
kprocs in that the kernel does not schedule them. Instead, kernel extensions are invoked from user
processes by system calls, or internal calls within the kernel, or started to handle external events
such as interrupts.

Kernel extensions run entirely within the kernel protection domain. An extension may export
system calls in addition to those exported by the base AIX kernel. User-domain code can only

Final Evaluation Report: IBM RS/6000 Distributed System

53

access these extensions through the exported system calls, or indirectly via the system calls
exported by the base kernel.

Device drivers are kernel extensions that manage specific peripheral devices used by the operating
system. Device drivers shield the operating system from device-specific details and provide a
common I/O model for user programs to access the associated devices. For example, a user
process calls read to read data, write to write data, and ioctl to perform I/O control functions.

5.2.5 Kernel Processes (kprocs)
The RS/6000 Distributed System has some processes that operate solely within the kernel on
behalf of kernel entities. Kernel processes (kprocs) are processes that spend all of their time in
supervisor state, running kernel code. There are no separate binaries associated with kernel
processes, they simply exist as part of the kernel proper. They can be created only by the kernel
and the only tasks they perform are on the behalf of kernel entities. They have a private u-area and
kernel stack, but share text with the rest of the kernel. They are scheduled and selected for
dispatch the same way as user processes and are designated within the process table as "kproc"
and are single-threaded1. On creation the kernel sets a priority for kprocs. The kprocs of the
RS/6000 Distributed System do not present a TCB interface because they are internal to the
kernel, cannot be created by user processes, cannot use shared library object code from the user
domain, and cannot be affected by user signals.

5.2.6 Trusted Processes
A trusted processes in the RS/6000 Distributed System is any process running with a
distinguished user ID, distinguished group ID, or in an operating environment where it affects the
correct operation of other such processes. Most high-level TCB functions are performed by
trusted processes particularly those providing distributed services.

A trusted process is distinguished from other user processes by the ability to affect the security
policy. Some trusted processes implement security policies directly (e.g., identification and
authentication) but many are trusted simply because they operate in an environment that confers
the ability to access TCB data (e.g., programs run by administrators or during system
initialization).

Trusted processes have all the kernel interfaces available for their use, but are limited to kernel-
provided mechanisms for communication and data sharing, such as files for data storage and
pipes, sockets and signals for communication.

The major functions implemented with trusted processes include user login, identification and
authentication, batch processing, audit data management and reduction, printer queue

1 There is one exception to the single-threaded rule on the evaluated configuration. The "GIL" kproc is multi-
threaded to handle the various timers that it must coordinate.

Final Evaluation Report: IBM RS/6000 Distributed System

54

management, network file transfer, backup and restore, system initialization, and system
administration.

5.2.7 User Processes
The RS/6000 TCB primarily exists to support the activities of user processes. A user, or non-
TCB, process has no special privileges or security attributes with respect to the TCB. The user
process is isolated from interference by other user processes primarily through the CPU execution
state and address protection mechanisms, and also through DAC protections on TCB interfaces
for process manipulation.

5.2.8 TCB Databases
Tables 5-1 and 5-2 identify the primary TCB databases used in the RS/6000 Distributed System
and their purpose. These are listed both as individual files (by pathname) or collections of files.
With the exception of databases listed with the User attribute (which indicates that a user can
read, but not write, the file), all of these databases are only accessible to administrators.

When the system comprises more than one machine, the administrative databases are shared
between the hosts. A single master copy of the databases is maintained on an administrative server
and made available for NFS-mounting by all the hosts in the system. A particular user or group
has the same identity on all hosts in the system. Some databases are maintained independently on
each host in the system (Table 5-1), while others are synchronized through sharing (Table 5-2).

Table 5-1. Administrative Databases. This table lists other administrative files used to
configure the TCB.

Database Purpose
/etc/filesystems Defines characteristics of mountable file systems.
/etc/security/audit/* Audit configuration files not specified in Table 5-1
/etc/security/failedlogin Lists last failed logins for each user.
/etc/security/lastlog Stores time/date of last successful login for each user.
/etc/security/login.cfg Defines attributes enforced when logging in or changing passwords.
/etc/security/portlog Records ports locked as a result of login failures.
/etc/security/roles Defines administrative roles. Not used in the evaluated configuration.
/etc/security/smitacl.group Defines which groups can use which Web-based System Management and

SMITTY screens. Not used in the evaluated configuration.
/etc/security/smitacl.user Defines which users can use which WSM and SMITTY screens. Not used in the

evaluated configuration.
/etc/security/sysck.cfg Defines file permissions, owner and group, and file checksum for verifying that

TCB software has not been tampered with.
/etc/security/user.roles Defines which users are permitted to assume administrative roles. Not used in the

evaluated configuration.
/etc/vfs controls another list of file system commands
/etc/inittab contains commands to srcmaster daemon that starts other system daemons.

Final Evaluation Report: IBM RS/6000 Distributed System

55

Table 5-2. Administrative Databases. This table lists the shared administrative files used to
configure the TCB.

Database Purpose
/etc/passwd Stores user names, UIDs, primary GID, home directories for all system users.
/etc/group Stores group names, supplemental GIDs, and group members for all system

groups.
/etc/hosts Contains hostnames and their address for hosts in the network. This file is used

to resolve a hostname into an Internet address in the absence of a domain name
server.

/etc/security/audit/bincmds Specifies the pipeline of commands to be performed by the auditbin daemon.
/etc/security/acl Specification of TCP port, host (or subnet), and user/group at that host or

subnet allowed access to the port.
/etc/security/audit/config Specifies who and what is going to be audited, where the bin audit data will

reside, and how auditing will be performed.
/etc/security/audit/events Defines all of the audit events that are recognized by the system and the form

of their tail data.
/etc/security/audit/objects Specifies file system objects whose access is to be audited along with for what

access modes it will be done.
/etc/security/audit/streamcmds Specifies the pipeline of commands to be connected to /dev/audit.
/etc/security/environ Stores default values for environment variables to be set at login time.
/etc/security/group Provides additional information about AIX groups.
/etc/security/.ids Defines the next available user and group id numbers to be used when creating

new ids.
/etc/security/limits Establishes resource consumption limits (memory, CPU, disk.).
/etc/security/passwd Defines user passwords in one-way encrypted form, plus additional

characteristics including previous passwords, password quality parameters.
/etc/security/.profile Default profile to be used when a new user is created.
/etc/security/services Specification of service names to be used by DACINET in the style of

/etc/services.
/etc/security/user Defines supplementary data about users, including audit status, required

password characteristics, access to su command.

5.2.9 Internal TCB Protection Mechanisms
All kernel software has access to all of memory, and the ability to execute all instructions. In
general, however, only memory containing kernel data structures is manipulated by kernel
software. Parameters are copied to and from process storage (i.e., that accessible outside the
kernel) by explicit internal mechanisms, and those interfaces only refer to storage belonging to the
process that invoked the kernel (e.g., by a system call).

Functions implemented in trusted processes are more strongly isolated than the kernel. Because
there is no explicit sharing of data, as there is in the kernel address space, all communications and
interactions between trusted processes take place explicitly through files and similar mechanisms.
This encourages an architecture in which specific TCB functions are implemented by well-defined
groups of processes.

Final Evaluation Report: IBM RS/6000 Distributed System

56

5.3 TCB Software Components
This section describes the security-relevant aspects of each of the following software components
that comprise the TCB software running on the system:

• Memory Management

• Process Management

• File System and I/O

• I/O Management

• Network File System

• Import and Export

• Backup and Restore

• Inter-Process Communication

• Low-Level Network Communication Protocols

• Network Application Protocols

• Identification and Authentication

• Interactive Login and Related Mechanisms

• Batch Processing

• Printer Services

• Mail

• Audit Management

• Initialization and Shutdown

• TCB Support

5.3.1 Memory Management
Memory management functions are performed by the Memory Management subsystem of the base
kernel, referred to as the Virtual Memory Manager (VMM). The VMM is responsible for
managing the system’s physical and virtual memory resources. The virtual memory resources are
implemented through paging.

A process makes references to memory using an effective address. The effective address is
translated into a virtual address, which is used to resolve the physical address in memory. Address
translation is described in section 4.6.2, Address Translation. The memory management hardware
computes the virtual and physical addresses when the processor executes a load, store, branch or
cache instruction, or when it fetches the next instruction.

5.3.1.1 Segmentation

AIX provides a segmented virtual address space for both the 32-bit and 64-bit processors. The
virtual memory design gives the user programs the appearance of one large contiguous address
space, even though the space used by the various programs is usually larger than the physical
memory available on the system. This is accomplished by keeping the virtual memory that has

Final Evaluation Report: IBM RS/6000 Distributed System

57

been recently referenced in physical memory, while virtual memory that has not been recently
referenced is kept on a paging device.

The segmented architecture divides a process’ address space into 256 MB pieces as an
optimization for addressing. This approach provides a larger address space than permitted by
straightforward mapping of 32-bit addresses, and allows the kernel to map different types of
memory objects into each segment. Section 5.3.2.1, Typical Process Address Space contains a
description of how segments are used by a process.

The segment protection keys, Supervisor and Problem State, are combined with the page
protection bits to determine accessibility of a page. This access check protects user or kernel
mode software from reading or writing particular memory addresses. A description of segment
and page protection as it is implemented in hardware can be found in sections 4.6.4.1, Segment
Protection and 4.6.4.2, Page Protection.

5.3.1.2 Paging

When a memory address not currently stored in physical memory is referenced, a page fault will
occur. The process of retrieving the page from paging space and placing it in real memory results
in the page being available for use. The user process only attempts to access an area of memory -
the VMM makes that piece of memory available transparently. When the VMM loads a piece of
virtual memory from disk, it will receive the referenced page, as outlined in figure 5.1 and the
description below. When a new page is allocated by the VMM, the kernel fills the page with
zeroes before making it available to the user process.

Paging space

Real MemoryHardware
Page Frame Table

Software
Page Frame Table

Real
Page
Num

SID Table

Virtual
Page
Number

External
Page Tables (XPT)

XPT addr+
page num

Disk block
Number

Figure 5.1: Page Frame Mapping

Final Evaluation Report: IBM RS/6000 Distributed System

58

The software page frame table keeps track of all pages currently in use. The hardware page frame
table keeps track of all the pages that are currently loaded in real memory. If the number of pages
in use exceeds the amount of real memory, the software page frame table will be used in the page
fault process to determine the location of a page. The hardware and software page frame tables
are only available in the kernel’s memory, while operating in kernel mode.

The process of mapping a page from real memory or paging space is as follows:

1. If the Translation Look-aside Buffer (TLB) has the mapping between virtual page number and
physical page, then the hardware directly calculates the physical address and accesses the
memory. Otherwise, continue at step 2.

2. The hardware consults the hardware page frame table (HPFT). If the page is found then the
physical address is calculated and memory is accessed. Otherwise the hardware generates an
exception which causes the VMM to be invoked in step 3.

3. The VMM looks in the software page frame table (SPFT) to determine if the page is in
memory. If so, the VMM accesses the real page number, which reloads the page reference in
the TLB and HPFT. User program execution is restarted and address translation recommences
at step 1 above.

4. If the page is not in the SPFT, the VMM checks the segment ID table’s segment control block
for the referenced segment. The block contains a pointer to the external page table (XPT),
which tells the VMM where to find the page on the disk. The XPT is a two-level table stored
in a double-indirect format. Each of the two levels has 256 entries, for a total of 65536 page
numbers. (65536 * 4 Kbytes = 256 Mbytes, the size of a segment). The VMM accesses the
XPT for the segment, user program execution is restarted and address translation
recommences at step 1 above.

5.3.1.3 Memory Protection and the Kernel

The page protection bits are generally set to the same values for each page in a segment, and are
treated as a segment level attribute. The kernel has an internal interface to modify the page
protection bits for a page range. This interface is used to modify the page protection bits for the
segment.

Two exceptions exist where an individual page’s protection bits would be changed to a value
different from the remainder of the segment: the SVC table and I/O operations. The SVC table is
described in section 5.3.2.1, Typical Process Address Space. Pages used in I/O operations may be
hidden to prevent inadvertent access to them when the kernel is in the process of filling the page
with data.

5.3.1.4 Pinned Memory

A portion of the address space available on the system may be pinned from within the kernel.
When memory is pinned, the pager is unable to swap out the page that contains the pinned
memory. A value is stored within the page frame table that is incremented when a memory
address within that page is pinned. When the pager is searching for pages to swap out, it first

Final Evaluation Report: IBM RS/6000 Distributed System

59

checks this field to see if a page is pinned. If this value is non-zero, the pager continues searching
for a page to swap out.

A portion of the kernel’s address space is pinned. Device drivers execute as kernel extensions, and
are broken down into two pieces: the top half and the bottom half. The top-half of the device
driver executes in the kernel’s process environment and does not need to be pinned, while the
bottom half runs in the kernel’s interrupt environment and is not allowed to page fault. There are
other pieces of memory that are pinned: the kernel’s heap, the process table, the CSA (Current
Save Area) and context save areas, all of the kernel’s interrupt handling code, and the hardware
and software page frame tables.

The interfaces for pinning and unpinning of memory addresses are implemented using kernel
services, and are only available from within the kernel. The kernel services are internal to the
kernel and provide no external interfaces.

The kernel may pin portions of the users address space, including the process’s user area. The user
area is discussed in section 5.3.2.3, Process Context. Device drivers reference the other portions
of a user’s address space, which are pinned and unpinned by the kernel, to pin/unpin user memory
involved in DMA operations.

5.3.2 Process Management
A process is a program that is in some state of execution. A process consists of the information in
the program along with information that the system requires for its execution.

Processes have a parent-child relationship. The first processes created on the system are the
kernel processes (kprocs) and then INIT. Every other process invoked on the system is created
using the fork system call, and is a child of the process that created it.

5.3.2.1 Typical Process Address Space

AIX Version 4.3.1 TCSEC Evaluated C2 Security supports 32-bit processes on the 604e, and 32
and 64-bit processes on the RS64. Each process contains a collection of segments that define the
process address space. A process cannot access arbitrary locations in the virtual memory space
because all references are made using effective addresses. An effective address will always be
translated to a virtual address. The translation requires the use of the segment registers (32-bit,
32-bit on 64-bit processor) or the segment table (64-bit). User mode processes are constrained to
the segments assigned by the kernel, because the instructions to move to and move from segment
registers are supervisor mode instructions.

The kernel segment is mapped as Segment 0 of every process. The system call table (SVC) and
system call initial code are the only portions of the kernel segment that are read-only to user mode
processes. The kernel uses page protection to make the user viewable portions of the kernel
segment read-only, and makes the remainder of the segment (the kernel text and data) invisible to
user processes.

Final Evaluation Report: IBM RS/6000 Distributed System

60

Table 5-3. Segments Contained in a Typical 32-bit Process. Each 32-bit user mode process
has sixteen 256MB segments available for use.

Segment Segment Name
0x0 Kernel segment (only parts visible)
0x1 User Text
0x2 Process Private
0x3-0xC Available for user (shmat, mmap)
0xD System Shared Library Text
0xE Available for shmat or mmap
0xF Per-Process Shared Library Data

Table 5-4. Segments Contained in the Typical 64-bit Process. Each 64-bit user mode process
has a theoretical 2**32 number of 256MB segments available for use. In implementation, the

number of segments is limited to 220.

Segment(s) Segment Name
0x0 Kernel segment (only parts visible)
0x1 Kernel segment 2 (only parts visible)
0x2 Reserved for user mode loader
0x3-0xC Available for user (shmat, mmap)
0xD Reserved for user mode loader
0xE Available for user (shmat, mmap)
0xF Reserved for user mode loader
0x10 - end of text User Text
end of text - end of data User Data
end of data - end of BSS User data that has not been initialized
end of BSS - end of heap User Heap2

end of heap - 0x6FFFFFFF Available for user (shmat, mmap)
0x70000000 - 0x7FFFFFFF Default User shmat, mmap area
0x80000000 - 0x8FFFFFFF User explicit load area
0x90000000 - 0x9FFFFFFF Shared Library Text and Data
0xA0000000 - 0xEFFFFFFF Reserved for system use
0xF0000000 - 0xFFFFFFFF User Initial Thread Stack

The user text segment contains the program text, loaded from an object file by the exec system
call. User mode processes have read-only access to this segment. This allows the kernel to
maintain one segment with a particular program’s code, and share it between multiple users.

The shared library text segment contains a copy of the program text for the shared libraries
currently in use on the system. Program text for shared libraries is loaded at the low end of the
segment. Shared libraries are automatically added to the users address space by the loader, when a
shared-library is loaded. User mode programs have read-only access to this segment, to facilitate
sharing between different user processes.

Shared library data segments are used to store the corresponding data associated with shared
library text segments. Shared library data segments are not shared with other processes.

2 This data is stored in segment two for a 32-bit process.

Final Evaluation Report: IBM RS/6000 Distributed System

61

Shared data segments provide a method for a process to create and attach shared memory, which
is accessible by other processes. Section 5.3.7, Inter-Process Communication describes shared
memory and its restraints.

Memory mapped segments provide user and kernel mode programs the ability to map whole files
into a segment. This is done as a performance enhancement, to allow loads and stores of a file to
be performed in a user’s virtual address space. DAC checks with the mmap system call are
performed before the file is made available in a segment. The page protection bits for the pages
that contain the memory mapped file are set depending on whether the user has read-only or read-
write access.

The process private segment contains the user data, the user stack, the kernel per-process data,
the primary kernel thread stack, and per-process loader data. This segment is not shared with
other processes.

5.3.2.2 Kernel Process Management

The kernel process management function manages both processes and threads. It creates and
destroys processes and schedules threads for execution. In an SMP computer, each CPU has its
own scheduler and makes its own independent scheduling decision, based on shared data
structures.

The process table is kernel controlled and lists all the currently running processes on the host. It is
pinned in memory so that access to it is available at all times. Each process has an entry in the
process table. The process table entry contains information necessary to keep track of the current
state of the process. This table is located in the kernel extension segment, and is not accessible to
user mode software.

The system may include multiple computers, but process management is a local function. There is
no mechanism for a host to dispatch processes or threads across the LAN onto other hosts.
Process IDs (PIDs) and Thread IDs (TIDs) refer to processes running on the local host's CPU(s),
and are unique at any given time on a particular host. Different hosts may have the same PIDs and
TIDs at the same time. PIDs and TIDs may eventually be reused on the same host.

Table 5-5. Process States. The current state of a process determines whether the process is
ready to execute or is waiting for something else to happen.

State Description
Idle Temporary state while the fork call is allocating resources for the creation of the new

process
Active Normal process state
Stopped Process has been stopped by the SIGSTOP signal
Swapped Process cannot run until the scheduler makes it active again.
Zombie Process was terminated and is awaiting final cleanup.

Final Evaluation Report: IBM RS/6000 Distributed System

62

5.3.2.3 Process Context

Each process is assigned a process ID upon creation. The process ID provides a method for
referencing the process, as well as an index into the process table.

The structures that define a process are the process table entry, the user area, and the process
credentials. Additionally, each thread in the process has a structure that provides information
about the thread and includes placeholders for register values when a context switch occurs.

The process table entry for a particular process stores a wide range of information about the
process.

Table 5-6. Process Table Fields. The following fields are a subset of the fields contained in a
process table entry. These are derived from /usr/include/sys/proc.h which is shipped on all

systems.

Heading Field Description
Process p_stat Process state

p_xstat Exit status for wait
Process Link Pointers p_child Head of list of children

p_siblings NULL terminated sibling list
p_uidl Processes with the same p_uid

Thread p_threadlist Head of list of threads
p_threadcount Number of threads
p_active Number of active threads
p_suspended Number of suspended threads
p_terminating Number of terminating threads

Scheduling p_nice Nice value for CPU usage
Identifier p_uid Real user identifier

p_suid Set user identifier
p_pid Unique process identifier
p_ppid Parent process identifier
p_sid Session identifier
p_pgrp Process group leader process id

Miscellaneous p_auditmask Audit mask
p_adspace Segment ID for the Process private segment

The user area of a process contains information about the process that does not need to be in
memory when the process is swapped out. Each process’ user area is stored in its process private
segment. The process table entry contains the value of p_adspace, which points to the segment ID
for the process private-segment. Since the process user area may be swapped out, the process
uses p_adspace to locate it.

The user area of the process cannot be modified by user-mode code, and is protected using the
page memory protection mechanisms.

Final Evaluation Report: IBM RS/6000 Distributed System

63

Table 5-7. Relevant User Area Fields. The following fields are a subset of the user area fields.
These are derived from /usr/include/sys/user.h which is shipped on all systems.

Field Description
U_ufd User’s file descriptor table
U_auditstatus Auditing resume or suspend for this process
U_cred User credentials
U_cmask Mask for file creation
U_adspace Array that stores the segment register values for the process
U_segst Shared memory and mapped file segment information

The credentials structure contains all the relevant identification information for the process. This
structure is pointed to from the user area, using the field U_cred.

The information stored in this structure is the basis for access control decisions and accountability
on the system. Section 7.3, Discretionary Access Control, describes how the DAC mechanism
performs access control decisions.

Table 5-8. Credentials. The following fields are the complete credentials structure for each
process. These are derived from /usr/include/sys/cred.h which is shipped on all systems.

Field Description
cr_ruid Real user id
cr_uid Effective user id
cr_suid Saved user id
cr_luid Login user id
cr_gid Effective group id
cr_rgid Real group id
cr_sgid Saved group id
cr_mpriv Maximum privileges
cr_ipriv Inherited privileges
cr_epriv Current privileges
cr_bpriv Bequeathed privileges
cr_ngrps Number of groups in group set
cr_groups Group set list

5.3.2.4 Thread Context

Thread context consists of two structures: thread and uthread. The thread structure consists of
per-thread information that can be used by other threads in the process. The thread structures
make up the thread table, and are stored in the kernel extension segment. The uthread structure
contains private per-thread data. The uthread structures are stored in the process private segment.
Both the thread and uthread structures are inaccessible by untrusted software.

Final Evaluation Report: IBM RS/6000 Distributed System

64

Table 5-9. Thread Table Fields. The following fields are a subset of the fields contained in a
thread table entry. These are derived from /usr/include/sys/thread.h which is shipped on all

systems.

Heading Field Description
Thread t_state Thread State

t_flags Thread flags
t_tid Unique Thread ID
t_wtype What the thread is waiting for

Signal t_sig Set of pending signals
t_sigmask Set of signals blocked by thread

Miscellaneous t_procp Pointer to owning process
t_stackp Stack Pointer

Table 5-10. Uthread Fields. The following fields are a subset of the fields contained in a
process table entry. These are derived from /usr/include/sys/uthread.h which is shipped on all

systems.

Heading Field Description
Uthread ut_save Machine state save area

ut_msr or ut_msr64 Machine status register value

A process consists of at least one thread. Process context provides the environment necessary for
a thread to execute. The thread contains the executable content and scheduling information. A
process provides the following context to the thread: process attributes, address space,
environment, working directory, file descriptor table and signal actions.

A thread references the process context to determine the values for the segment registers that
make up the process address space. Each thread keeps its own copy of the registers, stack,
scheduling priorities and pending/blocked signals.

Threads are visible to other processes using the PS command. Threads have no external interfaces
that can be invoked by other untrusted processes.

5.3.2.5 Process Creation

A new user process is created when its parent makes a fork system call. The fork routine makes
an almost exact copy of the parent’s process context and passes it to the child. The differences
between the parent and child process are the values stored for the process id and the parent
process id. The resource statistics of the child process are set to zero when the fork occurs

Final Evaluation Report: IBM RS/6000 Distributed System

65

The child inherits the following items from the parent:

• priority and nice values

• credentials

• process group membership

• the parent’s opened files just before the fork
• environment, signal handling settings

• SUID and SGID mode bits

• attached shared libraries

• attached shared memory segments

• attached mapped file segments

5.3.2.6 Process Destruction

The exit system call is used to terminate an existing process. The first task in the termination
process is for the kernel to adjust the process table, modifying the process being terminated to
zombie status. All files held open by the process are closed, and the VMM deallocates the
memory segments held by the process. The parent receives a signal to make it aware that the child
process has terminated.

A signal can also be the cause of process destruction. If a process attempts to access a memory
location that it does not have access to, an exception will be generated, and a signal will be sent to
the process to terminate it. Section 5.3.7, Inter-Process Communication discusses signals as an
IPC mechanism.

5.3.2.7 Program Invocation

The exec system call is used to execute a new program in the calling process. The exec system
call does not create a new process, but overlays the current process with a new program, which is
called the new-process image. The new-process image maintains its file descriptor table and user
area during the exec system call. The new process image may result in the change of identity,
depending if the process is set-user-ID or set-group-ID.

A set-user-ID program sets the effective user-id of the user invoking the program to the UID of
the owner of the program. A set-group-ID program sets the effective group-id of the user
invoking the program to the GID of the owning group of the program. This allows a process to
execute using the permissions of the owning user or group. A program is marked as set-user-ID
or set-group-ID using bits stored in the program’s inode on disk.

Final Evaluation Report: IBM RS/6000 Distributed System

66

5.3.2.8 Multiprocessing

The kernel provides mechanisms to ensure that in the multiprocessing environment two threads do
not inadvertently overwrite data simultaneously. The kernel supports this through serialization and
locks. An additional mechanism called funneling is used with regards to device drivers in the
multiprocessing environment. The multiprocessing hardware maintains the consistency of the
system caches, as described in section 4.5, Multiprocessing.

Funneling is the process of limiting a device driver to execution on the master processor. A single
processor is initially in control during the boot process. This first processor is designated as the
master processor. Device drivers that are not labeled as MP safe or MP efficient will only run on
the master processor. Device drivers that are MP safe provide correct data serialization in the MP
environment. Device drivers that are MP efficient are MP safe, and the design is optimized for
efficiency in the MP environment.

Serialization is the mechanism of arranging for processes to access data serially, instead of in
parallel. Before a program modifies a shared data item, it must ensure that no other thread will
change the item. Serialization is implemented using locks. A lock represents permission to access
one or more data items. Lock and unlock operations are atomic, so neither interrupts or
multiprocessor access affect their outcome. A thread that wishes to access shared data must
acquire the lock to that data before accessing it.

There are two different types of locks: simple and complex. Simple locks provide exclusive
ownership to a shared data item. Complex locks provide read/write access to a shared data item.

5.3.3 File System and I/O
This section describes the RS/6000 Distributed System file system, which provides access to
information stored in file system objects (FSOs). This section begins with a discussion of the file
system objects, followed by a description of the file system implementation and concludes with a
discussion of each file system type allowed in the evaluated configuration.

5.3.3.1 File System Objects

The RS/6000 Distributed System file system is organized as a hierarchy of directories that contain
file system objects (FSOs). File system objects include directories, ordinary files (which may
contain programs or data), symbolic links, and various special types of objects. At system startup,
the root file system is mounted. The root file system contains a number of directories that serve as
mount points where other file systems are attached to create the full file system hierarchy. During
system initialization a standard set of file systems is mounted, see section 5.3.16, Initialization and
Shutdown for further details.

All FSOs have a common set of security attributes that can be modified and examined. See section
6.4, File System Resources Security Attributes for further details. Some FSO types have
additional security attributes, described specifically for each object type. There are several types
of FSOs. These are distinguished by the operations that may be performed on them as well as by
the semantics of some operations.

Final Evaluation Report: IBM RS/6000 Distributed System

67

5.3.3.1.1 Directories

Directories are FSOs that organize the file system into a hierarchy. Each directory can contain
other FSOs, including other directories (a directory is actually a file that contains pointers to the
FSOs "contained" in the directory). Each FSO is named by a pathname, which is a sequence of
directory names followed by the FSO’s name. The names in a pathname are separated by slash
("/") characters. A pathname may start with a slash, indicating that it is an absolute pathname and
is interpreted starting from the root directory, which is at the top of the hierarchy. If a pathname
does not start with a slash, it is interpreted relative to the current directory of the process. Each
directory contains two special names, one of which (".") refers to the directory itself, and the
other ("..") refers to the containing directory.

5.3.3.1.2 Ordinary Files

The most common FSOs are ordinary files: they are opened and closed, and while open, data can
be read and written. These operations, as well as device-specific ioctl operations, are also
supported for device special files and, with the exception of writing, by directories. Regular files
can also be used to store executable programs.

5.3.3.1.3 Links

There are two types of links: symbolic and hard.

Symbolic links are used to organize the file system. A symbolic link contains a pathname, called
the target. When a symbolic link’s name is encountered by the kernel while parsing a pathname,
the contents of the symbolic link are logically prefixed to the remainder of the pathname, and the
parsing is restarted. A symbolic link in one directory can reference an object in an entirely
different location in the file system, and permit different pathnames to refer to the same object.

A hard link is not an FSO as such, but is a way of referring to the same object with multiple
names. Unlike a symbolic link, which has no restrictions on the new pathname it supplies (the
target need not even exist), a hard link is a name in a directory that is created referring to a
specific FSO and has restrictions on scope (e.g., it cannot name an object located in another file
system). The number of hard links pointing to an FSO is recorded within the FSO. The object will
not be deleted as long as a hard link to it exists.

5.3.3.1.4 Pipes

Pipes are an inter-process communication mechanism described in detail in section 5.3.7, Inter-
Process Communication. There are two types of pipes: unnamed and named. Unnamed pipes do
not have file names but are considered part of the file system because they are manipulated by
users through the file system interfaces, and are controlled within the kernel by file system
structures. Unnamed pipes do not have permanent storage. Transient storage, in the form of
buffers, is allocated from the kernel heap. An unnamed pipe is deleted when all processes that
have a file descriptor release the file descriptor or terminate.

Final Evaluation Report: IBM RS/6000 Distributed System

68

Named pipes implement data transfer using the same mechanisms as unnamed pipes, but they exist
as actual FSOs that must be opened to be used. Like unnamed pipes, FIFOs do not have
permanent storage, but they do have pathnames, and must be created and deleted explicitly.
FIFOs are visible across NFS but cannot be read or written between different hosts. The two
communicating processes must reside on the same host.

5.3.3.1.5 Device Special Files

Device special files provide a common interface to physical and virtual devices allowing them to
be manipulated in the same manner as regular data files. Device special files are named by
pathnames and accessed like files, supported by the SPECFS file system.

Devices in AIX are implemented as a hierarchy of logical devices each providing a virtual device
with certain operations. Each of these devices, in addition to the physical device, has a device
special file, which contains pathname data that the device driver uses to find other logical devices.
Ultimately a device special file for a logical device points to the device special file for the
appropriate physical device.

Device special files are created by the administrator and can only exist in the /dev directory as
mandated by the TFM.

5.3.3.2 File System Implementation

The AIX file system is implemented in three layers: Logical File System (LFS), Virtual File
System (VFS) and Physical File System.

5.3.3.2.1 Logical File System

The logical file system (LFS) is the layer of the file system where users can request file operations
by system calls such as open, close, and read. This layer provides a common interface to the user
irrespective of the underlying file system implementations (e.g. it is irrelevant if the file is a local
JFS file, or a remote NFS file). This level of the file system manages the user open file descriptor
tables and the system open file table.

The user open file descriptor table maintains a record of the files that a process currently has
open. This table is located in the process user area. When a program is started the first three
entries in the table are the default open files, standard in (stdin), standard out (stdout), and
standard error (stderr). These three file descriptors are associated with the input from, and output
to, the session’s controlling terminal. A process may decide to close those file descriptors (as is
commonly done by daemons). At that time they may be reused unless they are privileged
programs (SUID/SGID) at which point they are associated with /dev/null.3 When a process opens
files an entry is created in the user open file descriptor table. The process then refers to the file by

3 This unique, non-POSIX, behavior is as a result of a known exploit.

Final Evaluation Report: IBM RS/6000 Distributed System

69

its relative position in this table. The file entry in the user open file descriptor table points to an
entry in the system open file table.

The system open file table holds information for all files open on the system and is used to manage
I/O activity to these files. There is a separate entry in the system open file table corresponding to
each open operation. Initially, this corresponds to exactly one file descriptor in one process, but if
the file descriptor is duplicated with dup, or shared with a child over a fork, several file
descriptors may correspond to the same system open file table entry. Entries in this table contain
several fields holding data describing the current I/O condition of each file:

• status flags - indicating the mode in which the file was opened (e.g. read, read/write)

• file vnode location - discussed later in this chapter,

• file reference count - indicating how many processes are sharing the open file, and

• current byte offset into the file where the next I/O operation will occur.

5.3.3.2.2 Virtual File System

Below the LFS layer, the VFS layer provides applications with access to different types of
physical file systems without requiring users or applications to know the specifics of how the file
systems are implemented.

The evaluated configuration supports four types of virtual file systems:

• journaled file system (JFS),

• network file system (NFS),

• CD-ROM file system (CDRFS), and

• special file file system (SPECFS) - this is used internally by the kernel to support the
device I/O subsystem.

In the standard AIX product other types of file systems can be added through kernel extensions.
The evaluated configuration is restricted to the four mentioned above. The TFM forbids the
administrator from introducing other kernel extensions not present on the evaluated configuration
installation media.

There are four structures that support the VFS: the vnode and gnode, which represent files; and
the VFS structure, and GFS structures which represent file systems.

5.3.3.2.2.1 File Structures

A virtual node or vnode represents access to an object within a virtual file system. Vnodes are
used to translate a path name into a generic node or gnode. A vnode is either created, or used
again, for every reference made to a file through a path name. When a user attempts to open or
create a file, if the VFS structure containing the file already has a vnode representing that file, a
use count in the vnode is incremented and the existing vnode is used. Otherwise a new vnode is
created. Vnodes for each directory searched to resolve a pathname are also created, or referenced.
Vnodes are also created for files as the files are created.

Final Evaluation Report: IBM RS/6000 Distributed System

70

Table 5-11. The vnode structure as defined in /usr/include/sys/vnode.h.

Field Description
flag indicates the status of the vnode (whether the associated file system is mounted for example)
count the reference count
vfsp pointer to the VFS structure
mvfsp pointer to the VFS structure if this vnode is the mount point for the file system otherwise this is

null
gnode pointer to gnode structure

A gnode is the representation of an object in a file system implementation. There is a one to one
correspondence between a gnode and an object in a file system implementation.

The gnode serves as the interface between the logical file system and the physical file system
implementation. Calls to the file system implementation serve as requests to perform an operation
on a specific gnode.

A gnode is embedded within the file system implementation specific structure (inode for JFS,
rnode for NFS, cdrnode for CDRFS, and specnode for SPECFS). A gnode is needed in addition
to the file system inode or its equivalent, because some file system implementations may not
include the concept of an inode. The gnode structure substitutes for whatever structure the file
system implementation may have used to uniquely identify a file system object. The logical file
system relies on the file system implementation to provide valid data for the following fields in the
gnode: the type field which identifies the type of object represented by the gnode and the
operations field which identifies the set of operations that can be performed on the object. Gnodes
are created as needed by file system specific code at the same time the inode (or equivalent) is
created. This is normally immediately followed by a call to a kernel service to create a matching
vnode.

Table 5-12. The gnode structure as defined in /usr/include/sys/gnode.h.

Field Description
segment segment into which the file is mapped
operations pointer to vnodeops structure
vnode pointer to vnode structure
type the type of object represented

5.3.3.2.2.2 File System Structures

There is one VFS structure for each file system currently mounted. The VFS structure is central
to each mounted file system. It provides access to the vnodes currently loaded for the file system,
mount information, and a path back to the gfs structure and its file system specific subroutines
through the vfs_gfs pointer. The VFS structures are a linked list with the first VFS entry pointing
to the root file system.

Final Evaluation Report: IBM RS/6000 Distributed System

71

Table 5-13. The VFS Structure as Defined in /usr/include/sys/vfs.h.

Field Description
next A pointer to the next VFS structure
gfs A pointer to a gfs structure
mntd A pointer to the vnode that represents the root directory of the file system of this vfs

structure
mntdover A pointer back to the vnode that represents the mount point
vnodes All vnodes in this VFS
count number of users of this VFS
mdata mount information structure

The GFS structure contains information specific to each file system type. There is one GFS
structure in the kernel for each supported virtual file system type. By default, the evaluated
configuration has four GFS structures, one each for JFS, NFS, CDRFS and SPECFS. For each
GFS entry, there may be any number of VFS entries. The GFS structures are stored within a
global array accessible only by the kernel. The GFS structure includes the following fields:

Table 5-14. The GFS Structure as Defined in /usr/include/sys/gfs/h.

Field Description
ops A pointer to the vfsops structure
ops2 A pointer to a vnodeops structure
type An integer that contains a description of the VFS type: NFS=2, JFS=3, and CDRFS = 5.

A GFS, vnodeops and vfsops structure are created each time a new file system kernel extension is
added to the kernel. When new file systems are mounted, a VFS structure and mount structure
are created. The mount structure contains specifics of the mount request such as the object being
mounted, and the stub over which it is being mounted. The VFS structure is the connecting
structure, which links the vnodes (representing files) with the mount, structure information, and
the GFS structure.

5.3.3.2.3 Physical File System

Generally, a physical file system is a set of code that implements the vnode/ VFS interface and
which stores the file data on a local disk. Each of the file virtual file system descriptions given
below discusses the physical file system implementation for that particular file system type.

5.3.3.3 Virtual File System Types

There are four types of file systems supported by the RS/6000 Distributed System providing
access to different types of information in a uniform manner. Each of these are discussed in the
following sections.

5.3.3.3.1 JFS

The native file system type for AIX is the Journaled File System (JFS). JFS provides storage of
files on locally connected disks. The JFS is similar to many other UNIX file systems supporting
the entire set of file system semantics, providing an interface that is compatible with those file
systems. The main difference is that JFS uses database journaling techniques to maintain its

Final Evaluation Report: IBM RS/6000 Distributed System

72

structural consistency. This prevents damage to the file system when the system is halted
abnormally. JFS uses a log replay mechanism to provide a method of recovery after a file system
crash.

5.3.3.3.1.1 JFS Physical File System

The JFS physical file system organization is based on a segment. A segment is a logically
contiguous, but physically noncontiguous, set of data blocks. Segments are described by a disk
inode, which is a permanent record of the mapping of the logical blocks of a segment to physical
blocks. The JFS file systems have the following components:

Table 5-15. Physical File System Components.

Field Description
superblock file system description including size allocation and consistency of on-disk data structures.
diskmap bit map indicating whether each block on the logical volume is in use
disk inodes all disk inodes for the file system
disk inode extensions additional information (e.g., access control lists) which is too large for fixed size disk

inode.
indirect blocks list of indirect data blocks which compose a file (if the file is sufficiently large)
directories the file system namespace

5.3.3.3.1.2 JFS Support Structures

The JFS structures are the same as those described under the physical file system implementation.
The superblock exists at a well known disk address and records information global to the file
system. The remainder of the file system space is devoted to disk inodes and data blocks.

The disk inode is the primary structure supporting all FSOs in a JFS file system. There is a one-to-
one correspondence between a disk inode and a file. The disk inode contains the following
information:

• File type

• File access times

• File permission

• File owner/group

• Number of links to the file

• Size of the file

• Number of disk blocks in file/directory

 Since it would be inefficient to constantly perform a disk read to get the on-disk inode
information, when a file is opened an in-core inode is created, or located if already resident.

Final Evaluation Report: IBM RS/6000 Distributed System

73

 The incore inode contains:

• forward and backward pointers to indicate its place in the hash queue

• the gnode structure

• disk inode number of the file

• device major and minor numbers for the file’s file system

• a lock used by the kernel when it is updating the inode

• a reference count for the file (how many vnodes point to the gnode within this inode)

• the disk inode

All existing in-core inodes are kept in a hash table called the in-core inode table (ICIT), accessed
by device and index. This ensures that multiple inodes are not created for the same FSO. If an
FSO is currently in use its underlying device must be mounted.

5.3.3.3.1.3 Open, Close and Delete Operations

When an application attempts to open a JFS file it supplies the path name of the file and the
requested access, such as read/write. The access check is performed at this time. For each
component of the path, a vnode is found in memory or created as needed, the associated in-core
inode is also either found in memory or created as needed by fetching the disk inode. Based on the
access information contained within the in-core inode (both regular permissions and extended
permissions, if applicable) and the process credential structure, the DAC algorithm (found in
Chapter 7) is performed and if the access requested is permitted the open continues, otherwise the
open fails.

If the access check is passed, an entry is made in the system open file table, the vnode associated
with the gnode is either reactivated, or if already active, the vnode count is incremented, and the
user file descriptor table is updated to reference this new entity.

If the gnode is not resident because its associated in-core inode has been aged from the ICIT, the
disk inode is fetched from disk and the in-core inode is created and placed in the ICIT either
occupying a vacant entry or by aging the least recently used entry. The vnode pointed to by the
gnode is reactivated and the counter for the gnode contained within the in-core inode is
incremented. A new entry is added to the system open file table and the user file descriptor table is
updated to reference this new entry.

Finally, if the file was not already open, the VMM assigns a segment and maps the data blocks of
the file to the pages of that segment.

5.3.3.3.1.4 Read, and Write Operations

Other file system operations are those that are performed on the data contained in a file and
usually involve reading or writing the data in a file. However, before any data in a file can be
accessed the file must be opened, a file descriptor obtained, and entries created in file management
tables. A file descriptor is an integer index into one of these tables and serves as an identifier used
by a process to read and write an open file's contents.

Final Evaluation Report: IBM RS/6000 Distributed System

74

Files are read or written using the file descriptor that ultimately leads to the file inode containing
the description of where the requested data is located on disk. This information is used, along
with kernel memory buffers, to either read data in from disk and then deliver it to the process, or
write data out to disk.

5.3.3.3.1.5 Directory and Link Operations

Certain operations may be performed on directories, such as the creation of new directories,
removal of existing directories, and creation of links to FSOs. Directories are a special type of file
containing directory entries. A directory entry is a pointer to an FSO that is contained in a
directory. These FSOs can be files, other directories, or links to other FSOs. A directory entry
consists of a symbolic name for the FSO (i.e., the file name or directory name), a link (i.e., the i-
node number) to the object, and miscellaneous other information (including the directory entry
length and next directory entry offset).

A new directory can be created within an existing directory. This causes a new directory file to be
created and a new directory entry to be written into the parent directory file. Access checks are
made to verify that the requesting process has the necessary access rights to the parent directory
(and also that the new directory does not already exist).

The symbolic name contained in a directory entry can be replaced with another one to give a file a
new name. Links in directories can be created as either hard links or symbolic links. A hard link
consists of a new directory entry pointing to an existing FSO, and is not an independent object. A
hard link is created when a directory is opened and a new directory entry pointing to an existing
FSO is written. The inode of the FSO contains a link count that records the number of existing
hard links to the object. A hard link may be created to any type of FSO except a directory or a
symbolic link, and may only point to an FSO in the same file system as the hard link.

A symbolic link consists of a special data file that contains pathname information about a target
file. The kernel uses the pathname information in the symbolic link file when processing a
pathname lookup. The link file and its directory entry are created when a symbolic link is created.
A symbolic link is an object by itself; it exists independently of its target, and there are no
restrictions on what a symbolic link may point to. The contents of a symbolic link can be read; this
returns the pathname information contained in the link file. The ability of a process to obtain this
information is dependent only on the attributes of the containing directory.

5.3.3.3.1.6 Locking Operations

AIX provides data structures and a programming interface for implementing file and record
locking. Locks are enforced in one of two ways: advisory locks and mandatory locks. Advisory
locks are implemented between two or more cooperating processes. Before a cooperating process
attempts to read from or write to a region of the file, it checks for the existence of a lock. If a lock
already exists, the process can either sleep until the lock becomes available or return an error
condition to the application. If the region is not already locked, the process can then set a lock on
the region. The kernel guarantees that the lock test and set operation is performed atomically to
prevent a race condition.

Final Evaluation Report: IBM RS/6000 Distributed System

75

By default, AIX locks are advisory locks. The kernel will implement mandatory locks for any data
file that has its SGID bit set and the group execute bit clear. Mandatory locks are enabled with the
CHMOD command, by setting the SGID bit and clearing the group execute bit. A process uses the
fcntl system call to request a file lock. This system call may either block or return immediately,
possibly with an error indicating some requested portion of the file has been locked by another
process. Mandatory locks do not require the co-operation of other processes.

The kernel maintains a table, called the lock list, for implementing file and record locking. When a
process requests a lock on a portion of a file, the kernel inspects the requested file’s inode for a
pointer into this table. If one is found, the kernel follows the pointer(s) in the lock list that
describes a lock for the same file to determine if the region of the file is already locked. If not, an
unused record in the table will be updated with the new lock request information and is inserted
into the doubly linked list.

Since only one process can lock a region of a file at a time, the child process does not inherit file
and record locks from the parent process. All file and record locks owned by a process are
released when the process closes the file or when the process terminates.

5.3.3.3.2 CDRFS

The CDRFS permits access to various formats of read-only file systems on CD-ROM media. No
writable CD-ROM devices or device drivers are included in the evaluated configuration. Access
to the contents of a CD-ROM is performed through the normal file system interfaces.

The TFM mandates that the permissions on the CDROM devices remain root-only. However, it is
possible for permissions on individual files of a CDROM to be set when the CD is created. These
permissions cannot be modified because a CD is a read-only device.

5.3.3.3.2.1 CDRFS Physical File System

The physical attributes of the CDRFS file system are defined using the ISO-9660: 1988 Volume
and File Structure of CD-ROM for Information Interchange, the System Use Sharing Protocol
(SUSP), and the Rock Ridge Interchange Protocol (RRIP). The ISO-9660 standard defines the
format to which information on a CD-ROM disc must adhere. SUSP and RRIP extend the ISO-
9660 standard and provide a mechanism for storing POSIX file information as a portion of each
file. The AIX operating system supports the ISO-9660 CD-ROM format, as well as the SUSP and
RRIP protocols.

The volume space of a CD-ROM is recorded as a sequence of logical sectors and is organized
into logical blocks. The logical sector size is 2048 bytes. The logical block size is no smaller than
512 bytes.

The primary volume descriptor contains a collection of values about the volume. Security relevant
values contained about the volume are the logical block size for the volume, the location of the
root directory record, volume creation date and time, and the size and location of the path table.
The path table is defined by the ISO-9660 specification, but is not used by the CDRFS to resolve
pathnames.

Final Evaluation Report: IBM RS/6000 Distributed System

76

Directories are files that contain pointers to data files or other directory files. From the root
directory entry, there can be up to seven directory levels below. A directory record describes each
directory or file. A directory record contains the location of the file/directory on the disc, a file
identifier and a series of flags about the file. These flags determine whether the file is a directory
or normal file.

When the kernel is searching for a file, it begins by finding the root directory entry. If the file
being searched for is located in the root directory, the files location on disc is located using the
root directory entry. If the pathname that is being resolved points to a file that is in a directory
below the root, the kernel follows the root directory entry to the next level directory record,
pointed to by the root directory entry. The directory entry pointers are processed one at a time,
through the subsequent levels until the file is located or until the directory furthest from the root is
reached. If the directory furthest from the root is reached and the file has not been located, the file
requested does not exist.

ISO-9660 defines an Extended Attribute Record (XAR). The XAR contains fields for ownership
by user and group, permissions on the file/directory, and statistics of when the file was created
and modified. The XAR provides a limited scope of security values that the operating system
enforces.

If an XAR exists for a file or directory, it can occupy multiple sequential logical blocks, beginning
with the first logical block for the file/directory. The length of the XAR is specified in the
directory record. If an XAR does not exist, the default values for ownership and access
permissions are ownership by the root identity and group system, with access permissions set to
octal 555. The kernel places these values in the CDRNODE after discovering that no XAR exists.
If an XAR for the directory record exists, the values for owner, group and permissions are set by
the XAR.

SUSP defines a set of generic fields to be used to extend the system use area (SUA) of the ISO-
9660 directory records. The SUA is space allocated within the ISO-9660 directory record format
that is not utilized by ISO-9660. This space was set aside to allow custom implementations on top
of ISO-9660. System use fields (SUF) are variable length fields for defining extensions to the
ISO-9660 directory records.

AIX recognizes and processes SUSP records, but these records are not security relevant. They are
used to provide padding and continuation, and to split up the SUA into smaller pieces

RRIP provides a mechanism to specify POSIX file system information on read-only compact discs.
Nine system use fields are defined by RRIP. These fields are contained within the SUA for a
directory record.

The PX field is used to represent the POSIX file attributes. The RRIP PX definition allows for
setuid and setgid programs to be contained on a CD-ROM. This capability is restricted through a
TFM warning to the system administrator that mandates no CDROMS be mounted for use that
contain setuid/setgid programs. Only administrators (i.e. users capable of using the root identity)
are able to mount CDROM devices.

Final Evaluation Report: IBM RS/6000 Distributed System

77

Table 5.16: RRIP System Use Fields.

System Use Field Description Mandatory/Optional
PX POSIX File Attributes (using the method

outlined in section 7.3.1 to represent Unix
permission bits, in their octal form)

Mandatory

PN POSIX Device Modes Mandatory (for block/character devices)
SL Stores the content of a symbolic link Mandatory if PX is set for symbolic link
NM Alternate name of file/directory, different from

the ISO-9660 defined name for the directory
record

Optional

CL Records the new location of a directory that has
been relocated

Optional (used in conjunction with PL
and RE)

PL Specifies the original parent directory of a
directory that has been relocated

Optional (used in conjunction with CL
and RE)

RE Specifies that this directory has been relocated Optional (used in conjunction with CL
and PL)

TF Records time stamp information Optional
RR Flags indicating which fields were recorded for

this directory record
Optional

When a CD-ROM is created, the permissions on the files used as the source image are transferred
to the CD-ROM media using the standard defined for ISO-9660 XARs or RRIP. Once the CD-
ROM has been created, the permissions cannot be changed, as the compact disc media cannot be
overwritten.

5.3.3.3.2.2 CDRFS Support Structures

As discussed earlier in the file system implementation, each file system must have a gnode
structure. For CDRFS, the gnode structure is contained within the CDRNODE. The CDRNODE
is equivalent to the in-core inode of JFS and contains the gnode for CDRFS files. The
CDRNODEs are maintained within a cache managed by the kernel. As with the JFS, if the
CDRFS FSOs are currently in use the underlying CDROM must be mounted.

Table 5.17. The CDRNODE structure.

Field Description
gnode pointer to the generic node
number cdrnode number
dirent directory entry address
gen cdrnode generation number
mode file permissions
uid file owner identification
gid file group identification
nblocks number of logical blocks used

5.3.3.3.2.3 CDRFS Operations

When an application attempts to open a CDRFS file it supplies the path name of the file and the
requested access, in this case read or read/execute. The access check is performed at this time

Final Evaluation Report: IBM RS/6000 Distributed System

78

against the permissions contained within the CDRNODE. The CDRNODE is populated from the
XAR record or the RRIP PX system-use fields as appropriate for the format type of the CDROM.

An order of precedence for CD-ROM security attributes is enforced by AIX. ISO-9660 directory
records and SUSP fields do not contain security attributes, so they do not affect the order of
precedence. If a CDROM did not include Rock Ridge or an XAR, the default values specified
earlier in the section would be the permissions used. If a CDROM contained the Rock Ridge
format, it would be used in place of the default values. If a CDROM contains an XAR, it would
be used in place of the default values. If a CD-ROM properly follows the Rock Ridge format, it
would not contain an XAR. However, if a Rock Ridge CD-ROM were not properly formatted
and contained both an XAR and Rock Ridge information, the XAR will take precedence and
would be using to populate the security attributes in the CDRNODE rather than the Rock Ridge
information or the default values.

For each component of the path, a vnode is found in memory or created as needed, the associated
CDRNODE is searched for in the cdrnode cache. If the access check is passed, a new entry is
added to the system open file table and the user file descriptor table is updated to reference this
new entry.

5.3.3.3.3 NFS

The Network File System (NFS) is a distributed file system that provides for remote file access to
support the appearance that files stored on a remote machine are present in the local directory
hierarchy. Remote access to files through NFS requires no special user action (unlike remote
access to files through FTP, which requires users to transfer remote files explicitly before use).
The same system calls that work on local files work on files manipulated through NFS.

Similarities between NFS and JFS file access are:

• File names are all in the hierarchical file system tree

• Standard system calls are used: open, close, read, write, stat, lseek, link, unlink, chmod,
and chown.

• File access checking is identical in cases other than the file owner. (See Chapter 7 for the
description of this exception).

 Differences arise from distribution of access control:

• Access to a remote file is lost when the file is removed on the remote machine. The remote
access cannot keep a link open to that file.

• Access to a remote file may be lost when the file’s mode, owner, or group is changed.
Access checks are performed each time an operation is done on the file.

• Modifications to the file may have a delayed effect for readers of the file because of
network delays and distributed buffering.

The NFS server and client are both part of the TCB; the client is part of the kernel file system, and
sends NFS requests in response to file and I/O related system calls issued by a local process,
referred to as the client process. The client kernel completely identifies the client process through
passing the process credential structure of the local user process in the RPC call to the NFS server

Final Evaluation Report: IBM RS/6000 Distributed System

79

kernel. The NFS server kernel performs the operation (such as creating a directory, or reading a
block from a file) based on the identity of the client process (identified through the credential
structure passed from the client kernel) and sends the result to the client kernel. The client kernel
then, in turn, sends a result back to the client process that issued the system call resulting in the
NFS action. This process is completely analogous to what occurs in a system call resulting in a
JFS specific operation except that two kernels are involved in answering the system call, both the
client kernel where the client process exists and the NFS server kernel where the object exists.

5.3.3.3.3.1 Low-level NFS Implementation

NFS functions depend on the Remote Procedure Call (RPC) protocol to call the low-level file
access functions on the remote host. RPC eliminates the need for fixed assignment of privileged
ports to protocols. A client kernel requiring NFS services must first communicate with the
server’s portmap process or portmapper, giving it the name of the RPC service it wants. The
portmapper returns the port number that implements the service, if the service is available. Refer to
section 5.3.9.4, NFS for a complete description of the portmapper. The NFS server kernel satisfies
client kernel requests through the NFS server VFS and JFS and returns the results of the access to
the client kernel. The client kernel finishes the transaction by working up through the VFS to the
LFS and eventually returns results, for example a file descriptor, to the client process.

5.3.3.3.3.2 NFS Server Implementation

The NFS server process is started in user space with one NFS daemon or nfsd. This nfsd may start
one, or more, additional nfsds that open a TCP socket and pass the socket descriptor to the kernel
via an ioctl. If there are multiple nfsds, they are in a queue that waits for a request from an NFS
client to arrive in the receive queue of the socket. The requests are serviced, in turn by the nfsd at
the top of the queue. Multiple nfsds are started to enhance throughput performance on servicing
requests. A complete description of nfsd and the RPC daemons supporting NFS (rpc.lockd, rpc.statd
and rpc.mountd) is contained in section 5.3.9.4, NFS.

Each request serviced by an nfsd contains a file handle for the file being accessed. The file handle
contains all the information required by the server JFS to locate a vnode and associated incore-
inode for the requested object. If neither of these structures exist, the file handle is used to locate
the file directly on disk and create and populate these structures from the information contained in
the disk inode through the process described in the JFS description. Since NFS servers are
stateless, there is no guarantee that these structures exist on subsequent service requests and each
attempt to access the same file could repeat the procedure of fetching the disk inode from disk
and creating and populating the vnode and in-core inode structures. Further information on the
file handles is provided below. The NFS server completes the requested operation by accessing,
or creating, the vnode in the server’s local JFS and returning the results to the client kernel.

5.3.3.3.3.3 NFS Client Implementation

NFS client kernel operations are initiated via NFS specific vnode operations (i.e. vn_ops) as a
result of a client process issuing file and I/O system calls for objects that are NFS mounted. In
some cases, the client process request can be satisfied without making a call to the server. An

Final Evaluation Report: IBM RS/6000 Distributed System

80

example is a stat when the current file attributes are cached on the client and the cache has not
expired, allowing the client kernel to return the results to the client process.

Client NFS operations are very similar to JFS operations. Determining access permissions to a file
is done by accessing the NFS specific vnode operation that results in a system call to the client
kernel. The client kernel access routine checks the cached file attributes to determine if access has
been granted for this client process to this object previously. If it hasn’t, access is denied until the
client attribute cache is refreshed (at most 3 seconds) and no RPC request to the NFS server is
made. If access has been granted, the client kernel issues an RPC request to the server kernel to
check access. The information passed from the client kernel contains all the information required
by the server kernel to determine whether access should be granted. This information includes, the
credential structure4 that identifies the user, the file handle that identifies the object, and a bit
mask that identifies the mode requested (for example, read or read/write). Other operations work
in a similar manner and are further described in section 5.3.9.4, NFS.

5.3.3.3.3.4 NFS Support Structures

Since NFS depends on both a client and a server there are likewise two sets of support structures.
The server kernel support structures consist of the normal JFS structures that are pointed to by
the contents of the file handle. The client kernel has the normal VFS (for example a vnode) and
LFS (for example the file descriptor) support structures but instead of the normal JFS in-core
inode structure the client kernel uses an rnode and maintains an rnode cache analogous to the in-
core inode table. The rnode serves the same function for an NFS client as an incore-inode does to
the server JFS. The security relevant contents of an rnode are described in Table 5.18.

Table 5.18. The following fields are a subset of the fields contained in an rnode structure entry.
These are derived from /usr/include/sys/rnode.h which is shipped on all systems.

Field Description
hash rnode hash chain
vnode pointer to the vnode structure
gnode gnode structure
filehandle information necessary to uniquely identify the file on the server.
attr cached vnode attributes
attrtime time the cached attributes become invalid
mtime client time last modified
size file size

The client kernel references files on the server via file handles. The file handle is a token provided
by the server kernel to the client kernel and is given as a parameter in all NFS RPC requests. The
server kernel uses the file handle to uniquely identify the object on which the requested operation
will be executed. The file handle is never used or viewed by the client process. It is a kernel
internal structure passed only between the client and server kernel. The client kernel does not
view or manipulate the file handle and only uses it on RPC calls to the server kernel.

4 This is the credential structure that is discussed in section 5.3.2, Process Management.

Final Evaluation Report: IBM RS/6000 Distributed System

81

The file handle contains the device identifier, the inode number which uniquely identifies the file
on disk, and a generation number which helps the server kernel resolve whether the inode
referenced in the file handle has been reused. When the server kernel receives a file handle and
attempts to find the associated object, one of three situations could occur. The object could
already have an in-core inode in the in-core inode table (ICIT), an in-core inode may need to be
fetched from disk and created, or the file could have been deleted making the file handle invalid.

The server kernel first checks to see if an in-core inode is already resident in the in-core inode
table (ICIT). The kernel can determine this because, as discussed in the JFS implementation
section, device number and inode number index the ICIT. If the search is successful, the server
kernel VFS layer constructs a vnode for the file being accessed. If the look-up fails, the server
kernel assumes there is not an in-core inode and based again on the device number and inode
number, fetches the inode from disk and creates an associated in-core inode and vnode.

Invalid file handles exist when a file has been deleted and the disk inode has been released and
reused. This is recognized by the server kernel through use of the generation number field
contained within the file handle and also contained within the disk inode. The server kernel
increases the generation number when the disk inode is reused (after a file is deleted and the disk
inode is released) and on each access the server kernel compares the generation number in the
inode with the generation number in the file handle. If the generation numbers do not match, it
means that at some point the file had been deleted, the disk inode had been released for reuse, and
the server kernel had indeed reused it. If the server kernel encounters a mismatch in generation
numbers, a stale file handle error is returned to the client kernel.

A copy of the file handle is contained in the client kernel rnode and in that capacity is the
functional equivalent of the disk inode contained within the in-core inode. The fields within the
fileid structure are defined in Table 5.19.

Table 5.19. The following fields are a subset of the fields contained in a file handle structure.
These are derived from the /usr/include/sys/types.h file, which is shipped on all systems.

Field Description
inum disk inode identifier
gen disk inode generation number
device device major and minor numbers

Besides the file handle, another structure called the file attributes structure is returned on NFS
operations. The file attributes structure contains the basic attributes of a file and is used by the
client kernel to populate the rnode and the other VFS file structures necessary to represent the
remote file within the client kernel. Table 5.20 contains a description of the fields in the file
attributes structure.

Table 5.20 File Attributes Structure

Field Description
type Type of file such as file, directory.
mode the protection mode bits of the file
links number of hard links to the file
uid uid of the file owner

Final Evaluation Report: IBM RS/6000 Distributed System

82

gid gid of the file group
size size of the file in bytes
used number of bytes actually used
fsid file system identifier for the file

system
fileid disk inode identifier
atime last time file was accessed
mtime last time file was modified
ctime last time file attributes were changed

5.3.3.3.3.5 Caches

NFS has two client caches, attribute and buffer, that are used by the client kernel to conserve the
number of RPC calls made to support NFS reads and writes.

The client attribute cache is advisory in nature and is only used to restrict access, not permit
access. The client attribute cache is consulted to determine if the client process currently has
access to the file, if it does then an RPC call is made to determine access based on the file
attributes maintained by the server kernel before the operation (read or write) is allowed to
proceed. The client attribute cache is updated based on the timeout period (at most 3 seconds). It
is possible for a client process that actually does have access to be denied access until the client
attribute cache is updated.

The client buffer cache reduces the number of requests that need to be sent to an NFS server.
When a client process is reading from a file, the client biod issues RPC requests to the server
kernel to perform read-aheads on the file and fills the client buffer cache with blocks that the client
process will need in future operations. Similarly, data that is written to disk is written to the client
buffer cache first and then flushed out to disk when the buffer cache fills up.

All operations in NFS result in the rechecking of access permissions. Even if the data is resident
within the client kernel due to a biod read-ahead, an access check on the server is performed. If at
any point access is denied, an error is returned to the client kernel and the server kernel sends a
request to the client kernel to force the biod to flush the client buffer cache. It should be noted
that the biods are strictly a performance enhancement for NFS and are not required for NFS to
work properly. See section 5.3.9.4, NFS for a further discussion of biod.

5.3.3.3.3.6 NFS Mount and Export Operations

An NFS server makes local file systems available to remote NFS clients with EXPORTFS. This
command creates a table in the server’s kernel of exported file systems as well as the xtab file that
is used by the mountd process. mountd will return the file handle of exported file systems to
requesting clients who have been granted access by the exportfs. For a description of this process
see section 5.3.9.4, NFS.

NFS file systems are made available on clients via mounting. The NFS mount operation (as
illustrated in figure 5.2) is a two-step process where the first step is a call by the client to
determine what port the mountd is using on the server. The second step is the issuance of the
MOUNT command to the remote server’s mountd process with the pathname of the directory the

Final Evaluation Report: IBM RS/6000 Distributed System

83

client wishes to mount. If the request is accepted, mountd returns the file handle of the directory to
the client and the process completes. Otherwise an error is returned.

Arguments to MOUNT include the file handle, and the IP address of the server. Since every lookup
operation requires a file handle pointing to the named file on the server, the mount operation
seeds the lookup process by providing a file handle for the root of the mounted file system. The
file handle for the root of the mounted file system is stored in the associated rnode for the mount
point. The mount system call creates an entry in the client’s kernel mount table, and calls the
vnode interface to access the mount routine. This creates a root directory vnode for the NFS
mounted file system.

From this point, all lookup operations are generated by the server using a directory file handle
(starting at the root file handle) and looking up the name in that directory. It progresses down the
file system hierarchy in this manner, and at each step of the way directory vnodes/rnodes are
instantiated for the next step down.

MOUNT()
Portmapper

??mountd??

Port = XXX

mountd
@port XXX

Mount (filesystem)
export

exportfs
XTAB

Kernel
Mount
Table

filehandle

set up
client
mount
point

Client-Side Processing Server-Side Processing

Figure 5.2: The NFS Mount Operation. The NFS Mount Operation results in the client having
access to a remote file system or access denied, depending on information in the server XTAB

file.

5.3.3.3.3.7 NFS Open Operation

The open system call at the logical file system (LFS) level generates a call to the look-up-
pathname operation. This follows the normal LFS/VFS processing until it is determined that it is
an NFS mounted directory. At this point the NFS client kernel processes take over the requests.

An RPC request is made to check the client process’s access on the directory (to see if they have
execute permissions.) The client kernel compares the client process’ credentials against the client
attribute cache if information is available. If the information is not available, or it is available and
access was previously granted to the client process, then an RPC request is sent to the server to

Final Evaluation Report: IBM RS/6000 Distributed System

84

check access. If the information is available, and execute access was not previously permitted for
the client process, an error is returned by the client kernel to the client process for failed access.

If the above access check passes, the client kernel will begin a “lookup” for the pathname. This
lookup is the same as the JFS component by component search with each component lookup
resulting in two RPC requests to the NFS server, one to check for execute access and the other to
return the file handle for the directory. For each component in the pathname, the server is passed
the file handle from the previous component lookup (this is the directory file handle) and the
string name of the component to be looked up. For each directory, execute access is checked in
accordance with the DAC algorithm. The final lookup performed is with the file handle for the
directory containing the object (or file) that is going to be opened. The lookup and associated
access check at the server is performed with the client process credential structure that is passed
in the RPC request to the server. If the object being looked up is one of the directory components,
execute access is checked and if the access check fails an error is returned for failed access. If the
object being looked up is the object that is being opened, the client process credential structure
passed from the client kernel is used to determine if the client process has the proper access to
open the file. If this access check fails, an error is returned for failed access. If the access check
succeeds, a file handle is created and passed back to the client kernel. The client kernel then sends
the file handle back to the server to get the file attributes (known as a getattr call) necessary to
build the client kernel vnode including owner and create time. Access is again checked using the
client process credential structure.

After the lookup is completed, the LFS open will result in an RPC request to get fresh attributes
(getattr). If any attributes have changed since last time they were obtained, for example the create
time has changed, all client caches, including the client attribute caches, are purged. If the
modified time changed but the create time has not, the client data caches are purged but client
attribute caches remain unless the timeout for the client attribute caches has been reached.

Once the attributes are obtained the client can build a vnode and rnode for the NFS file and places
the necessary information in the client kernel system open file table and the client process’s open
file descriptor table and passes a file descriptor back to the client process.

5.3.3.3.3.8 NFS Read Operation

When a client process issues the read system call and the client LFS/VFS determines that this is a
read of a NFS file, the NFS operations are called upon to complete the request. For each read, the
client attribute cache is checked prior to the RPC request to the server kernel to see if the client
process had access previously and if so, the RPC call to request a read is allowed to proceed. If
the client attribute cache indicates that access was not permitted an error is returned.

If the client attribute cache access check is successful an RPC request is created. This request
contains the credential structure of the client process making the read request, the file handle of
the file from which data is to be read, the position within the file where the read is to begin, and
the number of bytes that are to be read. The server kernel checks access upon receiving the read
request to see if the client process still has permissions sufficient for the read.

Final Evaluation Report: IBM RS/6000 Distributed System

85

On a successful access check allowing read for the client process making the request, the server
returns the file attributes structure that provides the file attributes on completion of the read, the
number of bytes of data read, and if appropriate, an end-of-file. Presuming access checks succeed,
the read data will be returned by the client biod to the client process making the request if it is
already cached at the client. If a read from the server is required, the client process will be
suspended and a biod will issue an RPC request to the server kernel, passing the credential
structure of the client process to read the next block of the file into a buffer. The server kernel
makes an access check based on the credential structure passed on the RPC and if access is
permitted allows the read to continue. If the read was not permitted, a failure is returned and the
server kernel also signals the client kernel to force biod to flush the cache.

5.3.3.3.4 SPECFS

The SPECFS file system is used internally by the kernel to support the device I/O subsystem and
as such is not available to users directly. The SPECFS is used to support character and device
special files, as well as pipes.

The RS/6000 Distributed System, like other UNIX systems, treats attached devices as files, giving
each a file name abstraction in the physical file system. The device file names are associated with
actual files called device special files and as described above under FSOs, these are either block or
character special files. While the file system assigns an inode for a special file, the file takes no
actual disk space. Special files provide handles for interfacing with devices in the form of file
names that can be supplied for standard file operations for example, the open system call. The fact
that a device special file is opened like any other file allows an application to perform device I/O
without knowledge of the device being used.

When an application opens a device for I/O, or a pipe for IPC, the open system call causes the
kernel to allocate a file descriptor, file table entry, and vnode as it would for the opening of any
ordinary file. At this point however, the SPECFS, and its associated structures, are used to
service the request.

5.3.3.3.4.1 SPECFS Supporting Structures

As discussed earlier in the file system implementation, each file system must have a gnode
structure. For device special files there are two gnodes and two vnodes. The first gnode/vnode
pair maintain the special file’s place within the JFS and as described above for JFS, the vnode
points to the gnode contained with the in-core inode maintained for the device special file name
within the /dev hierarchy. The second gnode/vnode pair is used to associate the device special file
with a physical device (this is handled by the I/O subsystem).

Final Evaluation Report: IBM RS/6000 Distributed System

86

There are three additional structures used by SPECFS, specnodes, devnodes, and fifonodes. The
specnode contains the gnode structure and is equivalent to the in-core inode. It contains the
following information:

• pointer to the next specnode (used to form linked list of specnodes)

• reference count for the specnode

• the gnode

• pointer to the gnode contained within the in-core inode for the device special file

• pointer to a devnode structure (for a device) or a fifonode structure (for a pipe)

 For device special files the specnode described above points to a devnode. The devnode contains
the following information:

• pointers to the next/previous devnode (this is used to form a doubly linked list of
devnodes)

• device type field that holds the device major and minor number

• a reference count for this devnode

• pointer the specnode at the head of the linked list of specnodes sharing this device.

 For pipes the associated special structure is the fifonode. The fifonode contains the following
information:

• a size field that indicates how many bytes are currently in the pipe

• the write offset of the pipe

• the read offset of the pipe

• pointers to the buffers that hold the data as they move through the pipe

Since unnamed pipes do not have file names, the file descriptor of an unnamed pipe points to both
the read and write entries in the system open file table. The system open file table, in turn, points
to a single vnode which points to the gnode contained within the specnode which points to the
fifonode that controls the pipe.

Because named pipes have a name within the JFS, they follow the device special file case of two
vnode/gnode pairs, but instead of pointing to a devnode, the named pipe is controlled by a
fifonode, the same as an unnamed pipe.

5.3.3.4 Access Revocation

For JFS and CDRFS file systems, read and write access are governed at the time the file was
originally opened. In other words, access rights to a JFS or CDRFS file are revoked only when all
processes that are currently accessing the file close their open file descriptors, are terminated, or
the host is rebooted. On the other hand, for the NFS file system access requests at the server are
validated against the current set of access rights, not the access rights in effect at the time the file
was originally opened.

Final Evaluation Report: IBM RS/6000 Distributed System

87

5.3.4 I/O Management
The I/O subsystem is responsible for sending and receiving data to and from peripheral and
pseudo-devices (such as terminals, printers, disks, tape units, and network adapters).

The I/O subsystem performs the operations necessary to move data. All access checks occur at
the system call level. When a user mode process attempts to perform a read on a particular
device, the access check is performed when the system call is processed. If the user is allowed
access, the I/O subsystem within the kernel performs the work and returns the data. The user
mode process does not perform any I/O tasks except for what is available at the system call level.
The kernel is responsible for picking up the request from the system call and processing it.

5.3.4.1 High Level I/O Implementation

Device drivers control and manage specific devices used by the operating system. Device drivers
are installed into the kernel as kernel extensions to support a class of devices or a particular type
of device. Device drivers shield the operating system from device-specific details and provide a
common I/O model.

AIX supports two classes of real device drivers: character and block. AIX also supports pseudo-
device drivers and adapter drivers.

5.3.4.1.1 Character Device Drivers

Character device drivers include any device that reads or writes data one character at a time. Any
driver that has no associated hardware device (pseudo-device driver) is treated as a character
device driver. For example, /dev/mem, /dev/kmem, and /dev/bus0 are character pseudo-drivers.

5.3.4.1.2 Block Device Drivers

Block device drivers support random access devices with fixed-size data blocks. Devices
supported by a block device driver include hard disk drives, diskette drives, CD-ROM readers,
and tape drives. Block device drivers provide two means to access a block device:

• raw access: the device is accessed directly, without the data to be transferred being
buffered into manageable pieces by the kernel. The buffer supplied by the user program is
pinned in memory, without modification, before being transferred to the device.

• block access: data to be sent to the device is buffered by the kernel. The kernel transmits
information to the device in fixed block sizes. The buffer supplied by the user program is
to be copied to, or read from a buffer in the kernel before being transferred to the device.

If a block device is accessed as raw, the device driver can copy data from the pinned buffer to the
device. In this case, the size of the buffer supplied by the user must be equal to, or some multiple
of, the device’s block size.

Final Evaluation Report: IBM RS/6000 Distributed System

88

5.3.4.1.3 Pseudo-Device Drivers

Pseudo-device drivers handle virtual devices, which may not have a one-to-one relationship with a
physical device or no corresponding physical device. A pseudo-device driver is implemented as a
kernel construct that has an I/O device-like interface.

Pseudo-devices are used wherever a set of several physical devices must be used as an integrated
set. A pseudo-device provides a high-level virtual interface to aggregate devices that would
otherwise require user-level code. This enables the user or application code to run without
knowledge of physical device specifics.

5.3.4.1.4 Adapter Drivers

Adapter drivers are responsible for manipulating PCI cards or other system hardware and
managing transfers to and from the card. Adapter drivers use AIX kernel services to handle
hardware interrupts. Examples of drivers are SCSI, Ethernet and Token Ring.

5.3.4.2 Low Level I/O Implementation

5.3.4.2.1 Device Drivers

AIX device drivers are implemented as kernel extensions. Device driver routines provide support
for physical devices, and are divided into two halves. The top half of the device driver runs in the
kernel process environment and can be paged out, while the bottom half runs in the interrupt
handler environment and is pinned. The top half of the device driver is responsible for converting
requests from system calls into a format that is understood by the device, performing blocking and
buffering, and managing the queue of requests of a device. The bottom half of the device driver
provides the interrupt handler and routines to perform the actual I/O to the device.

5.3.4.2.2 Device Switch Table and Device Special Files

Block and character devices are accessed through the device switch table. The device switch table
is stored in kernel memory and contains one element for each configured device driver. Each
element is itself a table of entry point addresses with one address for each entry point provided by
that device driver.

Device driver entry points are inserted in the device switch table at device driver configuration
time. The driver configuration routines call various kernel services to install driver entry points
into one or more entries or rows of the table. Each table entry or row in the switch table is
indexed by a major number (for example, /dev/hdisk0 has major # 5 and minor # 0 device
numbers). The major number assigned to a device driver is the same as the major number pointed
to by the devnode for the device special file associated with the device (as described in the
SPECFS section above). Block and character devices are accessed through the corresponding
device special file located in the /dev directory.

Devices are identified in the kernel through major and minor numbers. The major number uniquely
identifies the relevant device driver and indexes the device switch table. The interpretation of the

Final Evaluation Report: IBM RS/6000 Distributed System

89

minor number is entirely dependent on the particular device driver. The minor device number
frequently serves as an index into a device driver-maintained array of information about each of
many devices or sub-devices supported by the device driver. When an application calls open,
close, read, or write, it specifies the major/minor device, and the kernel finds the rest. The device
special file system figures out which entry to use based on name and major number.

Programs do not need to understand these major and minor numbers to access devices. A
program accesses a device by opening the corresponding device special file located in the /dev
directory. The specnode contains a pointer to the devnode that contains the major and minor
number combination specified when the device special file was created, and this relationship is
kept constant until the special file is deleted. Device special files do not have to be created every
time a device driver is loaded. It is only necessary to create them when a new device is initially
added to the system.

5.3.4.2.3 Device I/O and The ioctl System Call

The ioctl system call provides an interface that allows permitted processes to control devices.

 Table 5-21. Block and Character Device Special Files. This table lists the device special files,
their purpose, accessibility, and existence of ioctl’s.

 Device Special File Purpose Accessible
only by the

root
identity

 Exclusive
Use

 ioctl’s

 /dev/cd# and /dev/rcd# Devices in the cd family refer to CD-
ROM devices.

 Y N Y, but only
by root

 /dev/null The infinite sink and empty source. It is a
device for discarding output or returning
end-of-file on input.

 N N N

 /dev/zero This device is the infinite NUL data
source for producing NUL data.

 N N N

 /dev/fd0,/dev/rfd0,/dev/fd0.18
/dev/rfd0.18, /dev/fd0h,
/dev/rfd0h, /dev/fd0.9,
/dev/rfd0.9,/dev/fd01
/dev/rfd01

 These devices refer to floppy disk devices. Y N Y, but only
by root

 /dev/rmt# Devices in the rmt family refer to the tape
drive.

 Y N Y, but only
by root

 /dev/gxme0 This device is the standard graphics
display in the evaluated configuration.

 N Y Y

 /dev/kbd0 This device is the standard native
keyboard in the evaluated configuration.

 N Y Y

 /dev/mouse0 This device is the standard native mouse
in the evaluated configuration.

 N Y Y

 /dev/rcm0 This device is the Rendering Context
Manager. It is used for graphics
processes, such as the X Windows
display. Only a single active instance may
exist.

 N Y Y

Final Evaluation Report: IBM RS/6000 Distributed System

90

The ability to execute an ioctl on a particular device is determined by the permissions and
ownership of the device special file. If a device is accessible only by the root identity, such as
/dev/cd#, /dev/fd* and /dev/rmt#, untrusted users cannot attempt an ioctl because they are not
able to open the device special file. To attempt an ioctl, the user must open the device special file
and receive a file descriptor. The file descriptor is passed with the ioctl system call.

A user who is logged in to the console of the AIX machine has ownership of the low function
terminal, keyboard, mouse and graphics adapter. Each of these devices has a collection of ioctl
available to modify parameters about the usage of the device. Table 5-22 provides a description of
the ioctl available for each device.

Some of the ioctl’s for the STREAMS devices are accessible only by the root identity. The device
driver enforces this access control policy for root-only ioctl’s when a user owns the device. If an
untrusted user attempts to execute a root-only ioctl, the call returns a permissions error.

Table 5-22. Block/Character Device Special Files and ioctl’s. This table lists the device
special files that contain ioctl’s available to the untrusted users.

 Device Special File Description of ioctl Functions Relevance
 /dev/gxme0 Query parameters of the card. The only information that is returned through

the use of these ioctl’s concerns physical
properties of the graphics card.

 /dev/kbd0 Set parameters for operation of the keyboard. These parameters only affect the current
operation of the keyboard. When the user
logs out, the keyboard driver returns this
device to a known state, to prevent any
changes made from affecting the next user to
login.

 /dev/mouse0 Set parameters for operation of the mouse. These parameters only affect the current
operation of the mouse. When the user logs
out, the mouse driver returns this device to a
known state, to prevent any changes made
from affecting the next user to login.

 /dev/rcm0 Get a handle to the device, assign ownership
for diagnostics, query power management
status.

 Ownership of the rcm0 device is assigned to
a user when the user logs in. Any ioctl
functions such as setting the diagnostic mode
are cleared when the user logs out. When an
X session is terminated, the rcm process is
returned to a known state.

Final Evaluation Report: IBM RS/6000 Distributed System

91

Table 5-23. Streams Device Special Files and ioctl’s. This table lists the device special files
used by streams that are accessible by untrusted users and the ioctl’s that can be used with them.

 Device Special File Description of ioctl Functions Relevance
 /dev/ptc Set/get attributes about the existing session,

set/get values for control characters, set/get
flow control, enable/disable input and
output character translation, set/get window
size.

In the worst case, the user can only affect
their own session.

 /dev/pts/* Set/get attributes about the existing session,
set/get values for control characters, set/get
flow control, enable/disable input and
output character translation, set/get window
size.

 In the worst case, the user can only affect
their own session.

 /dev/lft0 Query lft information, set the default
display, acquire display for exclusive use,
acquire display for diagnostics.

 In the worst case, the user could cause the
lft to stop working in the usual fashion,
thereby denying service to the users login
session.

5.3.4.2.4 STREAMS

Table 5-24. Streams Device Special Files. This table lists the device special files used by
streams that are accessible by untrusted users and the capability untrusted users have to affect

them.

 Device Special File Purpose Accessiblity
 /dev/ptc UNIX System V style PTY

master interface. When this
device is opened, a slave
device (pts/#) is opened.

Untrusted users can open a pseudo-terminal, but only
the owner of the pseudo-terminal can access the pts
device after the session has begun. The act of opening
/dev/ptc returns a slave pseudo-terminal that is not
currently in use, so an untrusted user cannot open
/dev/ptc and gain access to a session already in
progress.

 /dev/pts/# UNIX System V style PTY
slave interfaces. Access
control is managed inside the
PTY drivers so that arbitrary
processes are unable to access
an allocated PTY.

 Untrusted users can open a pseudo-terminal using the
procedure stated above for /dev/ptc, but only the owner
of the pseudo-terminal can access the pts device after
the session has begun.

The PTY device driver enforces the access control
policy for pty’s. The device driver does not allow
access when a user who does not own a pts attempts to
open it or when a user attempts to open a pts that has
not yet been allocated by /dev/ptc.

 /dev/nuls Empty data source and
infinite data sink for streams
operations.

Accessible to untrusted users all the time.

 /dev/lft0 Graphics, keyboard, and
mouse as both a traditional tty
and graphical interface.

 Accessible to the user logged in at the console. When
the device is not in use, it is owned by the root identity
with octal 600 permissions.

 /dev/tty Acts as a synonym for the
/dev/pts/# device for each
session.

 Accessible to all users, but it points to the users
/dev/pts/# entry for their session. This addresses a
different /dev/pts/# entry for each session.

Final Evaluation Report: IBM RS/6000 Distributed System

92

STREAMS are not available for general use by untrusted users outside of system-provided
devices. The only STREAMS devices available to untrusted users are pseudo terminals and
/dev/nuls. These devices are outlined in table 5-24.

Configuration of a STREAMS device is dependent upon permission to open the device or modify
the configuration files for the module or device. Untrusted users do not have write access to the
configuration files for STREAMS modules or the ability to open STREAMS devices (except for
the devices in table 5-24), so they are unable to affect the operation of the device directly or
indirectly.

5.3.5 Import and Export
Each node in the distributed system can optionally have an IBM Printer 4317 and/or a 4MM SCSI
tape drive. These devices serve as the import and export hardware used in the system. Refer to
5.2.6, Backup and Restore and 5.2.13, Printer Services for a description of these functions. A
floppy drive is included with each system for copying data and a CDROM is included for
installation of the AIX operating system and as an alternate media source for files.

The floppy, tape, and CDROM drive block and raw devices are only available to the root identity,
per the direction of the RS/6000 TFM. The access control on these devices is configured during
installation.

The TFM states that the administrator will not mount CDROM’s that contain setuid or setgid
programs.

5.3.6 Backup and Restore
Backup and restore operations are performed using the backup and restore commands, the 4MM
SCSI tape drive, and tape media. The administrator can manage backup and restore from the
WSM system administration utility or from the command line.

Backup and restore operations are image based, meaning that they backup and restore each
individual files inodes. Because these operations are inode based, the permission bits, setuid and
setgid bits, and the file’s ACL (if one exists) are backed up or restored on the media or file system
as a portion of the file.

Only the administrator can perform backup and restore operations. The device special file that
mediates access to the tape drive is accessible by only the administrator, and the backup and
restore commands are executable only by the root identity, and in the evaluated configuration
have the setuid and setgid bits disabled.

5.3.7 Inter-Process Communication
The inter-process communication (IPC) mechanisms involve any method or tool that allows
processes to share information. AIX provides various mechanisms, such as signals and pipes, as
well as the System V IPCs (shared memory, semaphores, and message queues).

Final Evaluation Report: IBM RS/6000 Distributed System

93

 Table 5-25. Overview of IPC. This table summarizes the IPC mechanisms provided by AIX.

Mechanism Characteristics Passing of file descriptors
Unnamed
Pipes

� allows related processes (e.g., parent/child, sibling/sibling)
on same host to transfer data unidirectionally

� read() and write() provide one-way flow of data via
corresponding file descriptors

� removed when all file descriptors closed
� since unnamed pipes have no file name or other type of

handle, unrelated processes cannot participate

Unnamed pipes have no mechanism
for passing file descriptors in either
the evaluated configuration or base
AIX. There is no programming
interface that will cause this to
occur.

FIFOs
(named
pipes)

� similar to unnamed pipes except a named pipe has a file
name created within a directory

� allows unrelated processes on local host to transfer data by
opening the named pipe for reading or writing

� mkfifo() creates persistent inode of type S_IFIFO
� read() and write() provide one-way flow of data via file

descriptors
� removed by unlink()

Named pipes have no mechanism
for passing file descriptors in either
the evaluated configuration or base
AIX. There is no programming
interface that will cause this to
occur.

SysV
Message
Queues

� a process can queue a message (ENQUEUE), then an
unrelated process can remove the message from the queue
(DEQUEUE), using kernel memory

� msgget() creates message queue on local host (or returns
descriptor to existing queue), based on shared key

� msgsnd() and msgrcv() provide access to queue
� IPC can be multiplexed (multiple senders/receivers); a

single message queue can serve any number of processes
� msgctl() performs control functions, including removal
� queue limits defined in msgctl() man page

SysV Message Queues have no
mechanism for passing file
descriptors in either the evaluated
configuration or base AIX. There is
no programming interface that will
cause this to occur.

SysV
Semaphores

� allows processes on same host to synchronize execution
� semget() creates semaphore on local host (or returns

descriptor to existing semaphore), based on shared key
� semop() provides atomic manipulation of semaphore

values
� semctl() performs control functions, including removal
� limits defined in semctl() man page

SysV Semaphores have no
mechanism for passing file
descriptors in either the evaluated
configuration or base AIX. There is
no programming interface that will
cause this to occur.

SysV
Shared
Memory

� allows processes on local host to share virtual memory,
such that data stored by one process is immediately visible
to another process

� basis for X11 shared memory socket
� shmget() creates a new region of virtual memory on local

host (or returns descriptor to existing one), based on
shared key

� shmat() attaches memory region; shmdt() detaches region
� region freed after last shmdt()
� shmctl() performs control functions
� limits defined in shmctl() man page

SysV Shared Memory has no
mechanism for passing file
descriptors in either the evaluated
configuration or base AIX. There is
no programming interface that will
cause this to occur.

UNIX
Domain
Sockets

� provides bi-directional IPC between processes on same
host using UNIX domain protocol

� provides datagram socket (similar to message queue) or
stream socket (similar to pipe)

� socket() associates socket with UNIX protocol
� socketpair() (available only for UNIX domain sockets)

Passing of file descriptors is blocked
for Unix Domain Sockets. In the
base AIX product, file descriptors
are passed in a control message. In
the evaluated configuration,
attempts to send this control

Final Evaluation Report: IBM RS/6000 Distributed System

94

Mechanism Characteristics Passing of file descriptors
returns a pair of interconnected sockets that can be used
for IPC on the same host.

� bind() creates a persistent inode of type S_IFSOCK and
associates the socket with the pathname of the socket
special file

� connect() requests a connection between two sockets

message are rejected within the
kernel. An error is returned to the
user who issued the system call and
the file descriptor is not passed.

Internet
Domain
Sockets

� provides bi-directional IPC between processes on same or
different hosts using Internet Protocol (IP)

� datagram socket (UDP) or stream socket (TCP)
� socket() associates socket with IP
� bind() associates the socket with an IP address, protocol

(TCP, UDP), and port.

Internet Domain Sockets have no
mechanism for passing file
descriptors in either the evaluated
configuration or base AIX. There is
no programming interface that will
cause this to occur. The
programming interface used for
Unix Domain Sockets in the base
AIX product is not present with
Internet Domain Sockets.

Signals � signal is a numbered event as identified in sys/signal.h to
notify another process of a condition or situation or to take
a specific action

� sent to a process by another process (must have same
EUID unless the root identity) or by the kernel

� process may send signal to another process or process
group using kill()

� kill() succeeds only if (a) UID or EUID of sender is same
as UID/EUID of process to be signaled or (b) sender is the
root identity

� signals are received asynchronously, and each process may
determine how to handle individual signals

Signals have no mechanism for
passing file descriptors in either the
evaluated configuration or base
AIX. There is no programming
interface that will cause this to
occur.

5.3.7.1 Unnamed Pipes

Pipes use the file system. Pipes created with the pipe system call do not have file names. This is
why they are called unnamed pipes. The file descriptors of a pipe point to entries in the file table.
There is one entry in the file table for each side (read and write) of the pipe. The two file table
entries of a pipe point to a common vnode. After building the pipe, the fork system call is used to
create a child process. A child process inherits its parent’s file descriptor table. Therefore, the
child inherits both sides of the pipe. Now each process (parent and child or child and child) can
close whichever side of the pipe they don’t intend to use since unnamed pipes can only support
unidirectional data transfer. One process uses the read system call to do the “listening”, while the
other uses the write system call to do the “talking”. The talker closes the read side of the pipe and
the listener closes the write side of the pipe.

Unnamed pipes are simply file descriptors. Non-SUID programs cannot inherit a file descriptor
associated with an unnamed pipe that was part of a SUID process. The inheritance rules for
ordinary file descriptors apply to SUID programs as well as non-SUID programs.

All processes that share an unnamed pipe must have been related at some point in time. It is not
possible for an unnamed pipe to become shared by any other means. A requirement of unnamed

Final Evaluation Report: IBM RS/6000 Distributed System

95

pipes is that their existence must be inherited. This limits them to only related processes such as
parent/child, sibling/sibling, and so forth.

5.3.7.2 Named Pipes or FIFOs

Named pipes are also known as FIFO files (first-in, first-out) and are implemented as a special file
type. The internal working of named pipes is similar to that of unnamed pipes, but a named pipe
has a file name created within a directory. This allows any process to open the named pipe for
reading or writing. Data written to a named pipe are held in the FIFO file until another process
reads from the named pipe.

Named pipes are created via the mkfifo system call specifying the appropriate permission bits.

5.3.7.3 System V IPC

System V IPCs include message queues, semaphores, and shared memory. Each of these three
mechanisms has a specific application, yet their interfaces are similar. The kernel maintains three
tables of descriptors, one table for each mechanism. Each of the descriptors includes a common
structure used for indicating the owner and permissions for the mechanism.

The programming interface for creating, accessing, using, and controlling the System V IPC tools
provides as consistent a syntax as possible between shared memory, semaphores, and message
queues. The system calls msgget, semget, and shmget are used to create or access existing
message queues, semaphore sets, and shared memory segments, respectively. The system calls
msgctl, semctl, and shmctl are used to control message queues, semaphore sets, and shared
memory segments, respectively. Controlling involves examining the IPC’s current settings,
changing owners, groups, and permissions, and removing the mechanism. Unique to each
mechanism type are additional control options.

Some system calls vary somewhat for the System V IPC mechanisms. Messages are posted to a
message queue via the msgsnd system call and retrieved from a message queue with msgrcv.
Semaphores are manipulated with the semop system call. Finally, the shmat system call is used for
attaching a shared memory segment to a process’s user space, while shmdt is used for detaching it
when finished.

A process must create each System V IPC mechanism before other processes can use it. While it
is in use, it is assigned to a descriptor, similar to a file descriptor, which is used as a handle when
accessing the mechanism. The descriptor for each System V IPC mechanism includes a common
structure (ipc_perm - which is defined in /usr/include/sys/ipc.h) that specifies the owner and group
of the mechanism, as well as the permissions sets that specify read and write privileges for the IPC
owner, the group, and others. The ipc_perm structure also includes the key for the IPC
mechanism. A key must be specified for each message queue, semaphore set, or shared memory
segment when it is created. All processes that intend to use the IPC mechanism must know the
key, but this key is not part of the access control policy for the IPC objects. The access check is
made at the time the object access is made. The access check is called from: semctl, semop,

Final Evaluation Report: IBM RS/6000 Distributed System

96

shmat, shmctl, msgctl, msgrcv, and msgsnd. So the access check is not made at
shmget/semget/msgget time, but rather at the time the object access is made.

Access permissions are checked when a user first attaches to the shared memory segment
(shmat), every time a user performs a semaphore operation (semop), and every time a user
performs a message operation (msgsnd/msgrcv).

Since access is checked at every operation, revocation is immediate for semaphores and message
queues. Immediate in this case means at the time of the next request. If a request is already in
progress it is not terminated (e.g. if a user is waiting on a message queue and access is revoked,
that user will still get the next message).

For shared memory segments, the process specifies the desired permissions at attach time
(shmat), and access is only granted if the user has sufficient rights (i.e., if the process requests
read/write and the user has read permission only, then the request will be refused). Additional
rights are not conferred to the process, even if the user gains additional rights after the initial
shmat occurs. If the process requested read-only and later on the user were granted write access
as well, the process would not automatically gain write access to the segment.

Finally, each message queue, semaphore set, or shared memory segment continues to exist, even if
all of the processes using them have terminated, until they are explicitly removed.

5.3.7.3.1 System V Message Queues

A message queue is like a bulletin board on which a process can post a message. Another process
can later pick up the message, removing the message from the queue. A message queue is created
with a call to msgget, which returns an identifier for the message queue. This identifier is used
with subsequent system calls as a handle for the message queue.

The msgsnd system call is used to post a message to a queue and takes as a parameter the
identifier of the message queue. Processes pull messages from a message queue by calling msgrcv,
which takes as a parameter the message queue, identifier.

The msgctl system call can be used to change owners, groups, and permissions, and to explicitly
remove the IPC mechanism.

The kernel maintains a table of message queue ID data structures. One slot in this table is
allocated for each message queue active on the system. The msg_perm field (as defined in
/usr/include/sys/msg.h) in this message queue ID structure contains an embedded ipc_perm
structure which contains the user IDs and group IDs of the creator and owner of the message
queue, along with the permissions and key value. Additional fields in the message queue ID
structure keep track of timestamps and processes sending/receiving messages from the queue.

5.3.7.3.2 System V Semaphores

A semaphore is an IPC mechanism that is used to relay some condition to all participating
processes. For instance, a semaphore can be used to synchronize use of some resource, such as a

Final Evaluation Report: IBM RS/6000 Distributed System

97

file or device. Semaphores are implemented in sets, the number of which is established when the
set is created. Most applications use semaphore sets that consist of a single semaphore value.

A semaphore set is created by a call to semget, which returns a semaphore set identifier. This
identifier is used with subsequent system calls when accessing the semaphore set. Once the
semaphore set has been created, other processes can access the set by calling semget with the
same key.

The semop system call is used to perform operations on semaphores (e.g., test or set/unset
semaphore value).

The semctl system call can be used to change owner, group, or permissions of the semaphore set,
as well as to explicitly remove the semaphore set.

The kernel maintains a table of semaphore set ID data structures. One slot in this table is allocated
for each semaphore set active on the system. The sem_perm field (as defined in
/usr/include/sys/sem.h) in this semaphore set ID structure contains an embedded ipc_perm
structure that contains the user IDs and group IDs of the creator and owner of the semaphore set,
along with the permissions and key value.

5.3.7.3.3 System V Shared Memory

Shared memory is the quickest and easiest way for two or more processes to share large amounts
of data. AIX implements shared memory by allowing processes to attach commonly defined
memory regions to their own memory space. The Virtual Memory Manager (VMM) sets up and
controls shared memory segments. A process creates a shared memory segment, just as a file is
created. Processes attach the segment, just as processes open files. A shared memory descriptor is
associated with the shared memory segment, much as a file descriptor is associated with an open
file. Finally, some process is responsible for removing the shared memory segment from the
system similar to a process removing a file.

To implement shared memory, a process calls shmget which returns an identifier for the shared
memory instance, much like a file descriptor, to refer to the shared memory segment.

Each participating process can call shmat providing the shared memory identifier. This system call
returns a pointer to the start of the shared memory segment. The participating processes can
assign data to the segment or examine the data in the segment. When a process is finished using a
shared memory segment, the shmdt system call should be used to detach the segment. A process
automatically detaches all shared memory segments when the process terminates. Detaching a
shared memory segment, even when done by the creator of the segment or the last process to
have it attached, does not remove the segment from the system. A shared memory segment is
removed from the system when a process with the same EUID as the creator or owner of the
segment, or a process running with an effective UID of 0 (root) calls the shmctl system call to
remove the shared memory segment when all participating processes have detached it. This
system call is also used to change owner, group, or permissions of the shared memory segment.

Final Evaluation Report: IBM RS/6000 Distributed System

98

The kernel maintains a table of shared memory ID data structures. One slot in this table is
allocated for each shared memory segment active on the system. The shm_perm field (as defined
in /usr/include/sys/shm.h) in this shared memory ID structure contains an embedded ipc_perm
structure which contains the user IDs and group IDs of the creator and owner of the shared
memory segment, along with the permissions and key value. Additional fields in the shared
memory ID structure keep track of timestamps and a link to the Virtual Memory Manager.

5.3.7.4 Sockets

Sockets are communication mechanisms. There are three different types of sockets: stream,
datagram, and raw.

Stream sockets provide sequenced, two-way transmission of data. Datagram sockets provide
connectionless messages of fixed length. Raw sockets provide access to internal network
protocols and interfaces. Raw sockets are available only to the root identity and the kernel
enforces creation. When running in the evaluated configuration, the system will not pass a file
descriptor via a UNIX domain socket.

5.3.7.4.1 UNIX Domain Sockets

UNIX domain sockets provide stream or datagram communications between two processes on
the same host computer. Server sockets must bind to and provide a known address for clients.

UNIX domain socket addresses are pathnames in the file system. The action of a server binding a
UNIX domain socket creates a UNIX domain socket special file. Other processes may access a
bound socket by specifying the object’s pathname in a connect request.

UNIX domain socket special files are treated identically to any other file in the AIX file system
from the perspective of access control, with the exception that using the bind or connect system
calls requires that the calling process must have both read and write access to the socket file. The
bind system call creates a persistent inode of type S_IFSOCK and associates the socket with the
pathname of the socket special file.

UNIX domain sockets exist in the file system name space. The socket files have both base mode
bits and extended ACL entries. Both are considered in making the DAC decision. The file system
controls access to the socket based upon the caller's rights to the socket special file.

The socket system call associates a socket with the UNIX protocol. The socketpair system call
(available only for UNIX domain sockets) returns a pair of interconnected sockets that can be
used for IPC on the same host. The connect system call is invoked by the client process to initiate
a connection on a socket. For stream sockets, connect builds a connection with the destination
and returns an error if it cannot. For datagram sockets, after the client and server invoke the
socket system call, there is no need for connection establishment.

Final Evaluation Report: IBM RS/6000 Distributed System

99

5.3.7.4.2 Internet Domain Sockets

Internet domain sockets provide stream (TCP) or datagram (UDP) communications on same or
different hosts using the Internet Protocol (IP). The socket system call associates a socket with IP.
The bind system call associates the socket with an IP address, protocol (TCP, UDP), and port. The
connect system call is invoked by the client process to initiate a connection on a socket. For
stream sockets, connect builds a connection with the destination and returns an error if it cannot.
For datagram sockets, after the client and server invoke the socket system call, there is no need
for connection establishment. In the evaluated configuration, the connect system call for stream
sockets is subject to access control on ports. See section 5.3.8.10 - TCP/IP and UDP/IP Protection
Mechanisms for further information.

5.3.7.5 Signals

Signals are sent to a process by another process or by the kernel. For example, a user may issue
the KILL command from the shell prompt to a background process to terminate the background
process. An example of a signal sent from the kernel to a process is when a process attempts to
perform an illegal act, such as a reference to an invalid memory pointer. The kernel uses a signal
to terminate the offending process and, in this case, to cause a core dump of the process. Signals
are also sent from the kernel to a process when driven by terminal control characters.

While signals are a form of IPC, their use is limited. They can only be implemented between
processes that share a common EUID (unless the sender is running under the root identity or
EUID 0). Signals cannot communicate data but simply notify the receiver of some condition; data
transfer must be accomplished by some other mechanism.

5.3.8 Low-Level Network Interfaces and Communications
Protocols
This section describes the protocols on which higher-level network services such as NFS and telnet
rely. Some of these (TCP, UDP) are directly accessible to users through the socket interface,
whereas others (IP, ARP) are used only within the TCB to support network services.

Final Evaluation Report: IBM RS/6000 Distributed System

100

Figure 5.3: Network Protocol Overview

5.3.8.1 Network Interfaces

The network interfaces for each adapter are exported by the network interface kernel extensions.
Each unique network adapter type has a network interface kernel extension. Only one instance of
the kernel extension is loaded for each unique network adapter type. If a host contains multiple
Ethernet adapters of the same type, only one instance of the Ethernet interface kernel extension
will be loaded.

 Table 5-26. Network Interfaces. Each network interface has a kernel extension that provides
the interface functions, at the interface kernel extension level.

Interface Description
en0, en1,
en2…enN

Ethernet interfaces

tr0, tr1, tr2…trN Token ring interfaces
lo0 Loop back interface

The device drivers for each network adapter contain transmit and receive queues that are used to
temporarily buffer data before it is transmitted over the wire. These queues are internal to kernel,
and are not accessible by untrusted users.

ioctl’s are used with the network device drivers by the root identity to perform the following
functions: enable or disable promiscuous mode, get statistics from the adapter, clear the statistics
on the adapter, and enable or disable multiple addresses for one interface.

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

WSM lpd timed X11 NFS

SMTP FTP telnet r-serv HTTP

Socket Interface

TCP UDP

IPv4
ICMP

ARP

Ethernet v 2.0 IEE 802.3 IEE 802.5

Ethernet Token Ring hardware

kernel

kernel

kernel

mostly user programs

Final Evaluation Report: IBM RS/6000 Distributed System

101

Table 5-27. Network Adapter Device Driver Interfaces. Each device driver loaded for a
network adapter has an entry in /dev to provide an interface to the hardware.

Interface Description
ent0, ent1,
ent2…entN

Ethernet interfaces

tok0, tok1,
tok2…tokN

Token ring interfaces

5.3.8.2 Internet Protocol

The Internet Protocol (IP) is a connection-less protocol that provides an unreliable packet delivery
service for TCP, UDP and ICMP, and ultimately, for data to and from user processes. The service
is called unreliable because packet delivery is not guaranteed and connection-less because each
packet is treated independently of all others. IP includes a set of rules defining how to process
packets, including when to generate error messages and when to discard packets. Part of this
processing includes data fragmentation and re-assembly when required by the underlying
hardware. A major function of the IP layer is to define the basic unit of data transfer used on
TCP/IP networks: the IP datagram. IP also specifies the exact format of all data as it passes
between hosts in the distributed system. IP is implemented within the kernel, and is not directly
available to user mode software.

While AIX includes support for IPv6, only IPv4 is included in the evaluated configuration. The
RS/6000 Distributed System Trusted Facility Manual provides a warning not to use IPv6. All
subsequent references to IP are with respect to IPv4.

The primary functions provided by IPv4 are addressing, fragmentation and re-assembly, and
routing.

5.3.8.2.1 Addressing

Each network interface has a unique 32-bit IP address. The IP addresses used on the RS/6000
Distributed System are defined in a centrally administered /etc/hosts file. An IP address is assigned
to an interface during system boot, by the IFCONFIG command called from /etc/rc.tcpip.

5.3.8.2.2 Fragmentation and Re-assembly

IP fragments data when the datagram is too large to fit into a physical frame for the media on
which the data is to be sent. Each IP datagram has an identification field that consists of a unique
integer that identifies the datagram. When IP fragments data, it copies this field into the IP header
of each fragment, allowing the IP module at the destination to know which fragments belong to
the datagram. A datagram remains fragmented until all fragments reach the destination host, that
is, they are not partially reassembled by routers. Packets may be sent with a flag to disable
fragmentation, and if the medium cannot handle the packet, IP discards it and returns an error
message to the sender.

Final Evaluation Report: IBM RS/6000 Distributed System

102

5.3.8.2.3 Routing

Routing is the process of sending data packets from a source to a destination. IP performs direct
routing for machines connected to the same physical network.

The ToE supports more than one physical network. IP forwarding is the mechanism used to allow
different network segments of the distributed system to communicate with each other. IP
forwarding happens internal to the kernel, for the sole purpose of moving packets from one
network segment to another.

IP forwarding requires that a host contain at least two network adapters. Each adapter must have
an IP address that represents a different network segment using a sub-net mask or a different IP
network address. IP forwarding is controlled using a global kernel variable. When IP forwarding is
enabled, the IP protocol examines each incoming IP packet to determine if the packet should be
forwarded. If a packet is destined for a network that the host can reach on an alternate network
interface, the packet is forwarded.

The RS/6000 Distributed System TFM states that no hardware routers may be used in the
evaluated configuration, and that only RS/6000 systems may function as network routers, using
static routes and IP forwarding.

5.3.8.3 TCP Layer

The Transmission Control Protocol is connection-oriented and provides a reliable, full-duplex
byte stream for a user process. TCP uses only the services of IP when sending and receiving
messages. Due to the unreliable service of the IP layer, TCP maintains its own timers, sequence
numbers, and checksums to ensure the reliable delivery of data.

TCP manages:

• the establishment and termination of connections between processes

• the sequencing of data that might be received out of order

• end-to-end reliability (checksums and acknowledgments)

• flow control (preventing a sender from transmitting data faster than the destination can
receive)

A socket pair uniquely identifies a TCP connection: a local IP address and port paired with a
remote IP address and port. TCP ports are numbered from 0-65535 where TCP ports at 1024 and
below are privileged. The RS/6000 distributed system has the ability to make any TCP ports above
1024 privileged as well. This capability is discussed in section 5.3.8.10.1, Privileged Ports. Only
the root identity can bind privileged ports. The process of binding a port establishes exclusive use
of that port.

5.3.8.4 UDP Layer

The User Datagram Protocol (UDP) is a datagram service that provides a connection-less,
unreliable protocol for user processes. UDP provides the application layer with the same service

Final Evaluation Report: IBM RS/6000 Distributed System

103

that IP provides, with port numbers for identifying user processes and an optional checksum to
verify the contents of the datagram. UDP ports are numbered from 0-65535, where UDP ports at
1024 and below are privileged as described above.

5.3.8.5 ICMP Protocol

The Internet Control Message Protocol (ICMP) handles the error and control information between
hosts on a network. ICMP reports error conditions and other information to the original source of
the datagram. IP datagrams transmit ICMP messages, but TCP/IP networking software generates
and processes these messages.

ICMP provides a test of the TCP/IP stacks on two hosts, and the physical hardware connections.
The PING command generates an echo request message to a remote host. If the destination host
receives the request, it responds by returning an echo reply. Successful receipt of a reply indicates
that the destination host is operational, and that the IP software on the host and destination is
functioning properly.

ICMP is implemented within the kernel and has only one external interface. Untrusted users can
invoke the PING command to use echo request, but cannot generate any other ICMP message types
because PING provides no parameter to create the different types. The PING command is setuid to
the root identity to allow it to create the echo ICMP message.

5.3.8.6 ARP

The ARP protocol broadcasts a packet on the network that states the IP address for resolution.
The host with the IP address in question responds with a reply packet stating its hardware
address. This IP address to hardware address mapping is stored in the ARP cache. Not every
packet operation requires an ARP lookup. The cache is consulted first.

The ARP protocol is implemented within the kernel and has no external interfaces. Untrusted
users or the root identity use the ARP command to query the current ARP cache. The ARP cache
is stored within protected kernel memory, and cannot be modified by untrusted users.

Access to the ARP cache is performed via unique ioctls performed on the ARP socket. Delete or
invalidate operations are only permitted by the root identity, and are controlled by the kernel in
the ioctl processing associated with the ARP entry deletion or cache invalidation. Arbitrary ARP
cache entry invalidation would pose a performance problem hence the restriction to the root
identity.

5.3.8.7 RPC

Remote Procedure Call (RPC) provides a mechanism for one host to make a procedure call to
another machine on the network. The RPC protocol is defined on top of both TCP and UDP - but
in the evaluated configuration the RPC protocol relies on the TCP/IP protocol to communicate
messages between hosts.

Final Evaluation Report: IBM RS/6000 Distributed System

104

RPC is used to communicate requests and responses between clients and servers. The client makes
a request using the program name, version number, and the procedure to execute. The request
also includes an authentication token, in the case of the NFS application’s use of RPC it is a
credential structure that is used on the server to determine access. If the requesting user has
access, a reply message is returned that includes the result of the remote procedure. If the user is
denied access, a message is returned specifying the reason the user was denied access.

5.3.8.8 Bind and Connect Interfaces to the Stack

The user interfaces to the TCP/IP stack exist as system calls. The path to setting up a socket based
communication involves the socket, bind, listen, and connect system calls. A program issues the
socket call and receives a descriptor. The bind system call is then issued to bind the socket to a
port. The privileged port mechanism is invoked at this time, as described in section 5.3.8.10.1,
Privileged Ports. If the bind is successful, a listen system call is performed, and the program waits
for a connection. A connect system call is issued from another process on the local host or from a
host on the network, which sets up the connection for use. At this point for TCP connections, the
access control on ports is invoked to allow the connection to be made or denied. See section
5.3.8.10.2, Access Control on Ports for further details. Until the socket is shutdown, the
processes can use the send and receive system calls to exchange data.

5.3.8.9 TCP/IP Stack

Table 5-28. User Interfaces to the TCP/IP Stack. An untrusted user invokes these system calls
to facilitate network communications using TCP or UDP.

System Call Description
accept Accepts a connection on a socket to create a new socket.
bind Binds a name to a socket.
connect Connects two sockets.
getdomainname Gets the name of the current domain.
gethostid Gets the unique identifier of the current host.
gethostname Gets the unique name of the current host.
getpeername Gets the name of the peer socket.
getsockname Gets the socket name.
getsockopt Gets options on sockets.
listen Listens for socket connections and limits the backlog of incoming

connections.
recv Receives messages from connected sockets.
recvfrom Receives messages from sockets.
recvmsg Receives a message from a socket.
send Sends messages from a connected socket.
sendmsg Sends a message from a socket by using a message structure.
sendto Sends messages through a socket.
setsockopt Sets socket options.
shutdown Shuts down all socket send and receive operations for that socket.
socket Creates an end point for communication and returns a descriptor.
socketpair Creates a pair of connected sockets.

Final Evaluation Report: IBM RS/6000 Distributed System

105

The TCP/IP stack is implemented as a kernel extension and exports intra-TCB interfaces to the
network device drivers which in turn facilitate the transfer of data to the network media. All of the
network protocols (TCP, UDP, IP, ARP, and ICMP) are implemented within the kernel extension.
The only external interfaces to the TCP/IP stack are the system calls listed in table 5-28, the ARP
command and the PING command.

Figure 5.4: AIX TCP/IP Stack

The loop back interface is contained at the interface kernel extension layer. All kernel functions
and security checks apply to the loop back interface.

A user mode process executes the send system call to transmit data. The send system call requires
a file descriptor and a buffer containing the data to be sent. When the send system call is invoked,
the user’s buffer is transferred from user memory to kernel memory. This copy operation happens
only once. Subsequent access to the buffer is made using a pointer. The kernel leaves enough
space free at the beginning of the buffer to insert the protocol and IP header.

User

Kernel

Application

Netinet kernel
extension

Interface kernel
extension

Device Driver

Adapter

bind(), connect(), socket()

System Call

IP

TCP UDP

ARP ICMP

en0 tr0 lo0

ent0 tok0

Ethernet Token
Ring

Network Cabling

Final Evaluation Report: IBM RS/6000 Distributed System

106

The path that is followed within the kernel is dependent on the type of socket in use. When an
Internet socket is used with the TCP protocol, the receiving socket is checked to make sure it has
enough space in it’s buffer allocated to receive the data and a TCP header is created in the buffer
on the local system. The next step is to fill in the IP header for the packet and determine the
correct route. The correct route is discovered by executing a function to determine the interface
and source address for the packet. The packet is then transferred to the interface kernel extension,
which formats the packet for the correct network type and passes it to the device driver. The final
step is for the device driver to transfer the packet to the network adapter using a DMA operation.

When a packet is received on a host, it travels through the adapter, device driver, and interface
kernel extension as described above, and is processed by the kernel before being sent to the user
mode process, as a buffer.

5.3.8.10 TCP/IP and UDP/IP Protection Mechanisms

TCP and UDP port privilege and access control mechanisms protect the hosts in the distributed
system. Privileged ports block anyone but the root identity from binding to a port that has been
designated as privileged. The access control mechanism performs a check to determine if a
requesting user is allowed access to a specified port.

5.3.8.10.1 Privileged Ports

Ports below 1024 are automatically privileged. This privilege check is implemented in the TCP/IP
stack. When an untrusted user attempts to bind a socket to a privileged port, the bind is not
completed and an error is returned. A function exists in the kernel that determines if a port is
privileged during a bind attempt.

The evaluated configuration has an additional privileged port mechanism. This mechanism allows
the root identity to specify TCP ports above 1024 as privileged.

The /etc/security/priv file contains the definition of privileged TCP ports above 1024. During
system boot, the /etc/security/priv file is read, and a kernel array is populated with the privileged
ports. When a user attempts to bind to a port, the kernel checks that the port is not below 1024
and that it is not included in the kernel array containing the list of privileged ports above 1024. If
the kernel determines a port is privileged, the bind is not completed and an error is returned. If the
port not privileged, the user is allowed to bind a socket to it.

Ports 6000-6255 are reserved for X Windows usage, and are configured to be privileged using the
mechanism above. NFS (2049) and WSM (9090) are also configured as privileged ports, using the
same mechanism.

5.3.8.10.2 Access Control on Ports

The only path a packet may follow once it has been received on the host is through the access
control mechanism, which is implemented in the TCP/IP stack.

Final Evaluation Report: IBM RS/6000 Distributed System

107

During system boot, two steps are performed to initialize access control on ports. First, the
/etc/security/acl file is read, and the UID, GID, and host information for the access check on a
port are written into a kernel structure. Second, the /etc/security/services file is read, and an ACL
is created allowing all access on the port for the specified service. Telnet, ftp and rexec are listed in
the /etc/security/services file for an ACL allowing all access. This presents no security issue
because use of telnet, ftp, and rexec requires that the user requesting service provide a valid
username and password before access is granted. The HTTP port is also included in the
/etc/security/services. HTTP is a public read-only service.

The ACLs contain UIDs and GIDs that are permitted to establish connections on the specified
TCP Internet Domain ports on the host. The ACL is of the form service/port, host/subnet, and
user/group. The host or subnet specification can be empty, in which case the user or group refers
to connections originating from any host in the system.

The ACL check is performed based on the effective user ID that is responsible for opening the
connection. The login and effective UIDs are passed from the originating host to the destination
host in an authentication header. The login UID is utilized for auditing operations. The
authentication header is implemented using a TCP option.

When a host attempts to connect, TCP uses a three-way handshake to setup the communication
path. This handshake involves sending a SYN packet, receiving an ACK (acknowledge) from the
remote host, and sending an ACK to tell the remote host that the connection is ready for use. The
kernel on the local host appends the authentication information to the SYN packet as a TCP
option. The kernel on the remote host performs the access check based on the values contained in
the TCP option and the access control information contained in kernel memory. If the UID of the
sender is allowed to connect to the port, an ACK is returned. If the UID is not allowed to connect
to the port, an RST (reset) is returned, and the connection is dropped on the remote side.

 The RS/6000 Trusted Facility Manual explains that the ports used by NFS, X11, SENDMAIL, and
WSM must be configured with an ACL that permits only the root identity to connect.

• For NFS, this is used to prevent a user on a client from forging requests to an NFS server
that would permit the user to become the root identity.

• For X11, this is used to protect the administrator if he/she chooses to use Internet Domain
Sockets.

• For SENDMAIL, this is used to prevent users from forging e-mail.

• For WSM, this is used to prevent non-administrative users from directly making requests
to the WSM server.

5.3.8.11 Address Mapping

Address mapping is the process of translating a name or Internet address to a hardware address.
There are two types of address mapping: Internet address to physical address and host name to
Internet address.

Final Evaluation Report: IBM RS/6000 Distributed System

108

5.3.8.11.1 Internet to Physical Address Mapping

Each network interface card installed in a host in the distributed system has a hardware address.
This hardware address cannot be changed, and is branded on the card at the time of manufacture.
This physical address is translated to an IP address via the ARP protocol.

5.3.8.11.2 Host Name to Internet Address Mapping

Each network interface card installed in a host is also assigned an IP address. When a user
attempts to connect to another host using a host name, the /etc/hosts file is referenced to provide
the IP address to hostname mapping.

Domain name service (DNS) is not included in the evaluated configuration.

5.3.9 Network Applications
This section summarizes the various application protocols included in the distributed system, as
well as inetd, which receives requests for network services and initiates server daemons.

Table 5-29. Network Applications. The following applications are used in the distributed
system to facilitate the exchange of information.

Protocol Description Security Features See Also
telnet a remote terminal

session on a host, from
another host in the
distributed system

Username and password must be
supplied during the initialization of the
session for I & A and user can change
identity if password is known

5.3.9.2 telnet and 5.3.11.2.1
Login with telnet

file transfer
protocol (FTP)

file transfer between
hosts in the distributed
system

Username and password must be
supplied during the initialization of the
session for I & A and user can change
identity if password is known

5.3.9.3 FTP and 5.2.11.2.7

simple mail
transfer
protocol
(SMTP)

the exchange of
electronic messages
between hosts in the
distributed system

privileged TCP port 25, allowing only
connections from the root identity on any
other host to this port

5.3.9.5 SMTP and 5.3.14
Mail

WSM systems management
interface

privileged TCP port 9090, allowing only
connections from the root identity on any
other host to this port

5.3.9.6 WSM and
5.3.11.2.6 WSM login

BSD r-services remote login, copy,
shell, and job
execution

authenticated r-services (rexec) require
providing an identity and password for I
& A and user can change identity if
password is known
unauthenticated r-services (rcp, rsh,
rlogin) force the user identity (LUID) to
be the same and user is not permitted to
switch identity using the -l option

5.3.9.7 rlogin and
5.3.11.2.2, Login with
rlogin
5.3.9.8 rsh and rcp,
5.3.11.2.3-4, Command
execution with rsh-rcp ,
5.3.9.9 rexec and
5.3.11.2.5, Command
execution with rexec

network file
system (NFS)

file sharing based on
exported file systems

Each RPC request contains user
authentication information. NFS server

5.3.9.4, NFS

Final Evaluation Report: IBM RS/6000 Distributed System

109

Protocol Description Security Features See Also
performs DAC based on user identity.
Requests permitted only from kernel
(privileged TCP port 2049). Server and
client both run internal to the TCB.

hyper text
transfer
protocol
(HTTP)

information exchange
between clients and
servers

Server provides a read-only service with
access restricted to AIX information
library documents only, e.g. TFM,
SFUG.

5.3.9.10 HTTP

line printer
daemon (LPD)

remote printing
capability

privileged TCP port 515, allowing only
communications from the root identity
on any other host to this port. Client and
server are setuid the root identity.

5.3.13 Printer Services

X Windows graphical operating
environment

privileged TCP ports 6000+x, where x is
the display number being used (x: 0 -
255).

5.3.9.13 X Windows

timed network based time
synchronization

None 5.3.9.14 timed

Table 5-30. Port Protection. The following table summarizes the server/client port protections
in the evaluated configuration.

Service Protocol Server Port Privileged Port (server) Root Access Control (client)
telnet telnet 23 TCP Y Y5

ftp ftp 21 TCP Y Y6

www http 80 TCP Y N6

mail smtp 25 TCP Y Y6

rlogin rlogin7
513 TCP Y Y

rsh rsh7
514 TCP Y Y

rcp rsh7
514 TCP Y Y

rexec rexec 512 TCP Y Y
lpd lpd 515 TCP Y Y
wsm wsm 9090 TCP Y Y
nfsd nfs 2049 TCP Y Y
mountd mount Assigned8 Y Y
statd stat Assigned8 Y Y
lockd lock Assigned8 Y Y
portmap sunrpc 111 TCP Y Y
timed time 525 UDP Y N

The following subsections summarize the client and server daemon interactions in the distributed
system with respect to process privilege and identification/authentication of user if applicable. The
TCB protection mechanisms which exist will be used to provide protection for the TCP/IP

5 Differs from common practice, most UNIX systems allow unprivileged clients.

6 Usable only for access to public information (TFM, SFUG).

7 Protocol extended to pass LUID.

8 Assigned by portmap, protection set up during initialization.

Final Evaluation Report: IBM RS/6000 Distributed System

110

connection using the privileged ports and access control on ports described in section 5.3.8.10,
TCP/IP and UDP/IP Protection Mechanisms.

5.3.9.1 inetd

inetd is a daemon that listens for connection requests for TCP or UDP based services, and starts
the appropriate daemon for the requested service. When inetd starts, it reads from the
/etc/inetd.conf file. inetd.conf provides a list of services (ftpd, rlogind, telnetd, rshd, rexecd, and
optionally WSM if remote enabled) that are initiated by inetd. inetd runs with the root identity, and
is executed by rc.tcpip during system initialization.

The interface to inetd consists of a number of Internet domain ports, both TCP and UDP, being
listened to. When inetd detects that a connection has been made to one of those ports, taking into
consideration the port protection mechanism, the command which is defined in /etc/inetd.conf for
that port is started and passed the new connection. That is the extent of the interface. The user
does not have any other mechanism for accessing inetd.

5.3.9.2 telnet

The telnet protocol provides a remote terminal session from another host in the distributed system.
The telnet client is a privileged program run by the user initiating the telnet session. The user must
supply a valid user name and password to initiate a session on another host. When a client initiates
a connection to TCP port 23 on a server, inetd spawns an instance of the telnetd server. The telnetd
server invokes LOGIN to perform identification and authentication. A user can change to an
alternate identity if a proper identity and password are provided. Audit on the host server is based
on this identity.

The telnet client runs setuid to the root identity to create a connection to TCP port 23 on the
remote host. TCP port 23 is protected by an access control that disallows connections from any
other user-id but 0. The telnetd server runs with a UID of 0.

The server running on the host creates a shell that runs with the identity of the user that logged in
to the server.

5.3.9.3 FTP

The FTP protocol is used to create an interactive session for performing file transfers between
hosts. When a client initiates a connection to TCP port 21 on a server, inetd spawns an instance of
the ftpd server. The FTP client prompts for the user’s name and password and transmits this
information to the ftpd server.

The ftpd server invokes the authenticate subroutine to perform I&A. The authenticate subroutine
is described in section 5.3.10.2, Common Authentication Mechanism. If the authentication
procedure is successful, the effective user-ID of the ftpd is set to the user-ID that logged in. The
ftpd server on the host issues system calls on behalf of the logged in user, using the identity of the
logged in user. Audit for the FTP session is determined by the audit parameters for the user
account.

Final Evaluation Report: IBM RS/6000 Distributed System

111

FTP Client software runs setuid to the root identity to create a connection to TCP port 21 on the
remote host. TCP port 21 is protected by a port-level access control that disallows connections
from any other user-id but 0. The ftpd server runs as UID 0 until it performs a setuid to the UID
of the user whom authenticated to the server.

Anonymous FTP is not supported in the evaluated configuration. There is no FTP or anonymous
account defined in the /etc/security/passwd file.

Table 5-31. Relevant FTP Protocol Commands. The following commands are the security
relevant commands used by the FTP protocol

Command Description Relevance
USER a string identifying the user Used in I&A
PASS a string identifying the users password Used in I&A
CWD,XCWD change working directory User must have execute access on the directory to

enter it
RETR retrieve a file User must have access to the file to download it
STOR store a file User must have access to the directory to upload the

file, and a file must not exist with the same name,
but belonging to another user

APPE append or create a file User must have access to the file or the file must not
exist

RNFR rename from filename User must have write access to the parent directory
and access to the file to be renamed

RNTO rename to filename User must have write access to the parent directory
and access to the file to be renamed

DELE delete named file User must have ownership of the file to delete
RMD,XRMD remove directory User must have ownership of the directory to delete

it
MKD,XMKD make a directory User must have rights in the directory to create a

new directory
SITE,CHMOD changes the permission bits for a

specified file
User must be the owner of the file to adjust
permission bits

5.3.9.4 NFS

NFS is an RPC based protocol, with a client-server relationship between the host having the file
system to be distributed and the host wanting access to that file system. NFS server daemons
called nfsd daemons run on the server and accept RPC calls from clients. NFS servers also run the
rpc.mountd daemon to handle file system mount requests and pathname translation. On an NFS
client, the biod daemon runs to improve NFS performance.

On the client host, each process using NFS files is a client process. The client process issues
system calls to access NFS mounted files, and the client kernel services these system calls by
issuing RPC calls to the NFS server from which these files were mounted. The virtual file system
layer extends the various operations (such as read/write) to work with remotely mounted file
systems. For example, on an NFS client, a user process executes the chmod system call on an
NFS-mounted file. The VFS layer passes the system call off to the NFS specific set of operations
in the client kernel which then executes an RPC to the NFS server which sets the permissions on
the file as specified in the client process’s system call. The NFS server replies to the client kernel

Final Evaluation Report: IBM RS/6000 Distributed System

112

whether or not the call succeeded and on success returns a new file attribute structure. The client
kernel in turn returns a success or failure to the client process that issued the system call.

5.3.9.4.1 RPC Components

There are only two daemons that are included in NFS proper: the server nfsd; and the client biod.
However, there are several RPC components that directly support NFS, namely the portmap
daemon and the rpc.mountd, rpc.statd and rpc.lockd daemons. In the evaluated configuration NFS is
the only trusted service using the RPC protocol and so the discussion of these RPC components is
provided here.

The rpc.mountd, rpc.statd and rpc.lockd daemons are all protected by access control entries on their
dynamically assigned ports. During system initialization, the DACINETADM command is issued twice.
The first time initializes the privileged port mechanism for ports above 1024 and any access-
control entries for ports which are defined in the /etc/security/acl file. The second time
DACINETADM is executed it querys the portmap daemon to discover the dynamically assigned TCP
ports and sets up the UID 0 access control entries for those ports.

5.3.9.4.1.1 portmap

RPC servers are started during the boot process and run as long as the host is up and running.
Instead of using pre-assigned ports and a super-server such as inetd, RPC servers are designated
by service number. The file /etc/rpc contains a list of RPC servers and their program numbers.
RPC services still use TCP port numbers to fit the underlying protocols, so the mapping of RPC
program numbers to port numbers is handled by the portmap daemon.

When an RPC server begins execution, it registers the port number it is listening on and the RPC
program number and version it serves. An RPC client kernel must contact the portmap daemon on
the server kernel to determine the port number used by an RPC server prior to attempting to send
RPC requests to that server. The portmap daemon returns the port number of the RPC server to
the client kernel to allow subsequent requests to be made.

In the evaluated configuration, NFS is the only trusted service that uses RPC. Untrusted software
may register with the RPC server to advertise untrusted RPC services. Untrusted software may
not override system level RPC services that have been allocated during system boot. The kernel
must free up RPC program and port numbers before they can be reused.

If the portmap daemon dies, clients will be unable to locate RPC daemon services on the server. A
server without a running portmap stops serving RPC-based applications such as NFS.

5.3.9.4.1.2 Mounting Network File Systems and rpc.mountd

NFS services require the rpc.mountd daemon be present to be able to service requests. On the
server, the /etc/exports file determines which file systems the NFS server will allow clients to
mount via NFS. At system initialization, the kernel checks to see if the /etc/exports file exists and,
if it does, runs EXPORTFS to make the file systems available for clients by placing them in the server
kernel export file system table. An administrator may cause other file systems to be exported once

Final Evaluation Report: IBM RS/6000 Distributed System

113

the server is up and running. The /etc/exports file and the server kernel exported file system table
may not match exactly.

The /etc/exports file contains the list of exported file systems and also contains any restrictions or
export options placed on each. The following table indicates the options that may be placed on file
systems within the exports file. If no restrictions or options are indicated in the exports file, any
client can mount the file system in any mode (e.g. read and write).

Table 5.32: NFS Export Options

Option Function
RW=host:host Limit hosts that can write to the file system. If no hostname is given, any NFS client may

write to the file system.
RO Prevent any host from writing to the file system. This is checked on operations, not on

mounts—i.e. the file system could be mounted read/write, but on any write operations a
failure error will be returned.

Access=host:host Restrict access to only the named hosts in this list.

5.3.9.4.1.3 NFS File Locking

NFS file locking is performed using the network lock manager rpc.lockd and the network status
monitor rpc.statd. These daemons run on both the client and the server and the client-side
daemons coordinate file locking on the NFS server through their server-side counterparts.

rpc.lockd processes lock requests generated locally or remotely by another lock daemon. If a local
client on a remote machine requests a lock, the rpc.lockd daemon forwards the lock request to the
remote machine.

rpc.statd works in conjunction with rpc.lockd, providing crash and recovery features for the locking
services of NFS.

5.3.9.4.2 NFS Server Daemon: nfsd

The nfsd daemon runs on the server and services client requests for NFS data. nfsd is started only
if the /etc/exports file indicates that there are file systems capable of being NFS mounted on
clients. The nfsd is started in user space, makes a system call into the kernel and never returns.
The system call executes the NFS code in the server kernel. Since the nfsd has not been reworked
to take advantage of the multi-threading capabilities of the AIX kernel, multiple versions of the
nfsd are started. Each version of the daemon handles one request at a time.

An ACL on the NFS service port (TCP 2049) permits only connections that originate from the
root identity. TCP port 2049 is a privileged port, so unprivileged processes cannot bind to the port
and advertise as NFS.

5.3.9.4.3 NFS Client Block I/O Daemon: biod

The biod daemons perform block I/O operations for NFS clients, performing some simple read-
ahead and write-behind optimization. There are multiple instances of biod so that each client
process can have multiple NFS requests outstanding at any time. It should be noted that the biod’s

Final Evaluation Report: IBM RS/6000 Distributed System

114

are only for improved performance on NFS read and write requests. They are not required for the
correct operation of NFS.

The biod daemon runs on all NFS client systems and issues requests to NFS servers for
information, on the part of the user. The biod daemon is invoked at system boot time, and runs
continuously. The client-side biod daemon is the part of NFS that interacts with the buffer cache.
The file buffer cache mechanism is used to provide throughput, similar to that achieved with a JFS
file pre-fetch operation that reduces the number of disk accesses when a process is reading a file,
by moving file blocks between the server kernel and client kernel.

The client-side caching mechanisms (buffer caching and file attribute) reduce the number of
requests that need to be sent to an NFS server. When a process is reading from a file, the client
kernel performs read-ahead on the file and fills the buffer cache with blocks that the process will
need in future operations. Similarly, data that is written to disk is written into the cache first and
then flushed out to disk when the cache fills up.

When the client process requests a read file operation, the client kernel makes a request to the
biod daemon which sends an RPC request to the nfsd on the server to read additional data as a pre-
fetch activity.

5.3.9.5 SMTP

Simple Mail Transfer Protocol (SMTP) is used to facilitate the exchange of electronic messages
between users in the distributed system via a TCP/IP connection.

The SMTP client (SENDMAIL) runs setuid to the root identity to create a connection to TCP port
25. TCP port 25 is protected by an access control that disallows connections from any other user-
id but 0. The execution of SENDMAIL as a system daemon runs with UID 0. The SENDMAIL
application is both the client and server in the evaluated configuration. SENDMAIL is discussed in
section 5.3.14, Mail.

5.3.9.6 WSM

The Web-based System Manager (WSM) is a client-server administrative interface for the
distributed system. WSM is the only interface allowed for system administration while the system
is operating in multi-user, secure state. The TFM states that the administrator should not use
SMITTY, the text based management interface, when the system is operating in secure state, and
should only use WSM.

WSM allows the administrator to perform system administration tasks involving users, software,
devices, printers, logical volumes, file systems, backup/restore, network settings, processes, and
subsystems. WSM acts as a front-end shell for the execution of commands by providing dialog
boxes to assist in formatting command parameters.

The commands called from the GUI are the same commands used to administer the system from
the command line. The ability to execute a command is enforced at the command interface, by the

Final Evaluation Report: IBM RS/6000 Distributed System

115

permissions on the command. WSM provides the same functionality as the command line, without
the administrator memorizing the exact parameters for each command.

The WSM client runs as an X client, and allows the administrator to administer the local machine
or a remote machine. The administrator is required to authenticate locally or remotely, as outlined
below.

The WSM server is a daemon that is invoked by inetd following a connection to TCP port 9090.
TCP port 9090 is protected by an access control that disallows connections from any other user-id
but the root identity.

5.3.9.6.1 Local Mode

The WSM client provides the capability to administer the local machine in local mode and runs
with the security attributes of the user who executed it. Untrusted users can use WSM in local
mode.

The user who executes the WSM client locally can perform a “Switch User” to use the WSM client
as a different user or as the root identity. To successfully “Switch User”, the correct password for
the account being switched to must be provided.

The WSM client does not communicate with a WSM server when operating in local mode. The
WSM client process performs a fork to create a new process and exec to execute the requested
command directly. The new process is created using the effective UID of the WSM client process,
and runs with the security attributes of the currently authenticated user.

If an administrative user wishes to perform administrative functions on the local machine they
invoke the “Switch User” option from the GUI. The “Switch User” option presents a dialog box
for the administrator to enter the username root and the root identity’s password. “Switch User”
then calls the common authentication mechanism and if the authentication information is correct,
the effective UID of the WSM client process is changed to zero, causing all subsequent commands
to be executed with an effective UID of zero.

The “Switch User” is not limited to the root identity. It is limited by knowledge of the password
for the account you wish to “Switch User” to and the current state of login restrictions against the
account.

5.3.9.6.2 Remote Mode

In remote mode, the administrator is interacting with the WSM server on the remote machine,
while executing the WSM client on the local machine. Only the administrator can use WSM in
remote mode.

To use WSM in remote mode, the administrator executes the same client as local mode. The
command to launch the WSM client contains a parameter that specifies which host in the
distributed system to connect to. This parameter causes the communication between the client and
server to take place using a TCP socket.

Final Evaluation Report: IBM RS/6000 Distributed System

116

To administer a remote machine, the administrator must complete the following steps:

1. Login to the local machine with a non-root user ID.
2. Start X Windows.
3. Su to the root identity. This allows the administrator to connect to TCP port 9090 on the

remote host.
4. Start WSM Client in remote mode, specifying the remote machine to administer using the

command line parameter.
5. Login to the WSM server by providing a non-root user ID and password.
6. Perform the Switch User menu option from the WSM Client to assume the root identity on

the remote machine.

The common authentication mechanism is called to process the login request to the WSM server.
It the user successfully authenticates, their UID, GID and login UID are stored. The login name
on the remote side must be their non-administrative user-id. To assume the root identity, they
must perform a second “Switch User”. If the “Switch User” to the root identity is successful, the
WSM server stores zero for the user ID.

The login UID is not modified by the Switch User menu option. If the system generates an audit
record as a result of a command that is executed by the user on the remote side, the audit record
on the remote machine contains the correct login UID. If they have successfully performed a
Switch User to the root identity, their login UID is not changed, so an audit record will contain
the login UID that was set on their initial login to the WSM server.

The WSM Server executes as UID 0. When the currently logged in user requests a command, the
WSM server process performs a fork, a setgid to set the group ID for the child process, a setuid to
change the UID of the process from zero to the UID for the logged in user of the WSM server and
an exec to execute the command. The login UID value for the child process is set by the WSM
server using a system call before it performs the setuid, ensuring that any audit records that are
cut on the remote machine due to command execution will contain the correct value for login
UID.

5.3.9.7 rlogin

This protocol allows a user to login to a remote host. The server running on host creates a shell
that runs with the user’s identity (same as on client). DAC and audit are performed using this
identity.

The rlogin client passes the user’s identity to the rlogind server. When a client initiates a connection
on TCP port 513 on a server, inetd spawns an instance of the rlogind server.

The user is not permitted to switch identity using the -l option. The client runs setuid to the root
identity and utilize TCP port 513. TCP port 513 is protected by an access control that disallows
connections from any other user-id but 0.

Final Evaluation Report: IBM RS/6000 Distributed System

117

5.3.9.8 rsh, rcp

rsh provides a shell on a remote host. The server running on host creates a shell that runs with the
user’s identity (same as on client). DAC and audit are performed using this identity. The RCP
client software connects to the rshd server, but is separate from the rsh client software.

The rsh client passes the user’s identity to the rshd server. When a client initiates a connection on
TCP port 514 on a server, inetd spawns an instance of the rshd server. The user is not permitted to
switch identity using -l option. The client runs setuid to the root identity and utilizes TCP port
514. TCP port 514 is protected by an access control that disallows connections from any other
user-id but 0.

5.3.9.9 rexec

This protocol provides the capability to execute jobs on a remote host.

The user must supply a valid user name and password to initiate an rexec session. When a client
initiates a connection on TCP port 512 on a server, inetd spawns an instance of the rexecd server.
The rexecd server invokes the common authentication mechanism directly to perform the I & A. A
user can change to an alternate identity if a valid user name and password are provided. Audit on
the server host is based on this identity.

The client and server run as setuid root and utilize privileged TCP port 512. TCP port 512 is
protected by an access control that disallows connections from any other user-id but the root
identity. Client and server must run as setuid root to connect or bind to that port.

The server running on host executes command with identity of the user that logged in to the
server.

5.3.9.10 HTTP

The Hypertext Transfer Protocol (HTTP) is an application-level protocol. HTTP is used within the
RS/6000 Distributed System to provide administrators and users an interface with the Lotus
Domino Go Webserver. The Webserver provides an interface to users and administrators to view
and search public information such as the TFM, SFUG, and other system reference information
through cgi scripts.

The HTTP protocol has no access control defined on the connect side because information
provided is public (system documentation). The TFM tells the administrator that the HTTP
protocol and the web server are only to be used for presentation of public data. The interface
provided by HTTP consists of messages, requests, responses, and entity as described below.

WSM does not use the web browser or Webserver. Instead it executes as a standalone application.

Final Evaluation Report: IBM RS/6000 Distributed System

118

5.3.9.10.1 Messages

HTTP messages consist of requests from client to server and responses from server to client
offering an interface to the administrator and to untrusted users. These only concern
communication options such as the date and time at which the message originated, or any type of
transfer encoding that has been applied to the message body. This interface is not security relevant
and it only affects the ability of the client and server to communicate.

5.3.9.10.2 Requests

Table 5.33 HTTP Request Methods. The HTTP request interface provides a number of
methods by which to request services from the web server.

Method Description Security Analysis
OPTIONS The OPTIONS method is a request

for information about the available
communication options.

This interface is not security relevant. It only affects the ability
of the client and server to communicate

GET The GET method retrieves the
identified entity. If the identified
entity refers to a data-producing
process the data produced is
returned as the entity.

The HTTP configuration file (/etc/http.conf) specifies the root of
the file system available over the Webserver. Users are restricted
to performing GET operations on the files within the specified
directory. (Attempts to "back out" of the specified directory
using "../” are thwarted.) Requests for files over the HTTP
interface are relative to the specified directory to the requested
file name. In the evaluated system all files in the specified
directory intended for public access and are world readable.

HEAD The HEAD method is identical to
GET except only the meta-
information is returned.

This interface allows only meta-information to be returned to the
user. It is no worse than what can happen with the GET
interface. The analysis performed for the GET interface applies
here as well.

POST The POST method is a request to
the server to accept the enclosed
entity. POST is a method to
provide a block of data, such as the
result of submitting a form, to a
data-handling process.

In the evaluated system the POST method is used as the
interface to the document search utility (docsearch). The user
may use the provided form which converts form input into POST
requests specifying a search string and selecting documents to
search. Alternatively, the user may directly interface with the
docsearch utility by submitting his own POST requests. More
detail on document search service is provided in section
5.3.9.12, The Documentation Search Service.

PUT The PUT method requests that the
enclosed entity be written to the
destination. If the PUT refers to an
existing resource, the resource may
be overwritten. If the request does
not refer to an existing resource,
the server may create the resource.

The PUT method has been disabled in the evaluated
configuration and is not available at the user interface. Methods
may be disabled with the appropriate stanza in the /etc/http.conf
file. The RS/6000 Distributed System comes with the
appropriate stanza in the /etc/http.conf file.

DELETE The DELETE method requests
that the origin server delete a
resource.

The DELETE method has been disabled in the evaluated
configuration and is not available at the user interface. Methods
are disabled by appropriate stanza in the /etc/http.conf file. The
RS/6000 Distributed System comes with the appropriate stanza
in the /etc/http.conf file.

TRACE The TRACE method is used to
invoke a remote, application-layer
loop- back of the request message.

This interface is not security relevant as it only allows a user to
see what is being received at the other end of the request chain
and use that data for testing or diagnostic information.

Final Evaluation Report: IBM RS/6000 Distributed System

119

A client request message to a server specifies the method to be applied to a resource. Methods
indicate the action to be performed on the resource identified. The following methods are
available in HTTP v1.1.

5.3.9.10.3 Responses

After receiving and interpreting a request message, a server responds with an HTTP response
message. Server responses are in 1 of 4 categories:

• Informational - Request received, continuing process

• Success - The action was successfully received, understood, and accepted

• Client Error - The request contains bad syntax or cannot be fulfilled

• Server Error - The server failed to fulfill an apparently valid request

5.3.9.10.4 Entity

Request and Response messages may transfer an entity if not otherwise restricted by the request
method or response status code. An entity consists of entity-header fields and an entity-body.

5.3.9.11 Web Server

Lotus Domino Go Webserver is a scalable, high-performance web server. It can be extended to
include security, site indexing capabilities, and advanced server statistics reporting tools. The file
sets that are part of additional Webserver packages are listed in Table 5.34. In the evaluated
configuration only the basic Webserver executables have been installed.

Table 5.34. Lotus Domino Go Webserver Packages. Only the Webserver executables and
corresponding English message catalog have been installed in the evaluated configuration.

Package File Sets Description Installed?
Internet server.base internet_server.base.admin administration files No

internet_server.base.doc documentation gifs and
HTMLs

No

internet_server.base.httpd executables Yes
internet_server.msg.en_US.httpd corresponding English

message catalog,
Yes

Internet server.java internet_server.java.jdk JDK 1.1.2 for AIX No
internet_server.java.servlets files for java servlet support No
internet_server.java.XX files for java servlet support

for XX
No

internet_server.security.common internet_server.security.common security files with 56 bit
encryption for use outside of
North America.

No

internet_server.security.us
common

internet_server.security.common security files with 128 bit
encryption for use within
North America.

No

NetQ NetQ.cgi.base Search Engine CGI
executables and icons

No

NetQ.cgi.XX Search Engine CGI
executables and icons for XX

No

Final Evaluation Report: IBM RS/6000 Distributed System

120

The browser (Netscape) provides users with an interface to request services from the web server
and to display the servers responses. The web server runs as the root identity to bind to privileged
TCP port 80. The web server forks a copy of itself to run as nobody on behalf of the invoking
user.

5.3.9.12 The Documentation Search Service

 The Documentation Search Service provides a Webserver search form that allows users to search
HTML online documents. The service includes a search engine and a CGI layer. The CGI layer is
stored in and run by a forked copy of the Webserver on a documentation server computer running
as nobody.

When the CGI layer is called by an application, it automatically generates a search form inside the
browser, passes the user’s search query to the search engine, and displays the search results on
results pages. A default generic form is provided. However, using commands a user can
customize the search form to change things in the form such as the title, text, graphics, and book
volumes (indexes) that are searched.

A search is performed for a user calling the DS_FORM CGI program that is installed in the
Webserver cgi-bin directory on the documentation server. If you call this program without
specifying any parameters, it will, by default, return the generic global search form. A user may,
however, call this program with individual parameters or a parameter file as discussed in the next
two sections.

5.3.9.12.1 Parameters Method for Calling a Custom Search Form

Table 5.35. Custom Search Passed Parameters. Users may customize their search through
parameter to the doc search cgi script.

Parameter Description Default
columns Tells the search form CGI how many indexes to display on each line of

the search form page.
3

config Instead of including parameters in your HTML link that customize your
search form, you can just specify the name of a configuration file
(config=filename.lang) that contains your customization information.

None

indexes Instructs the search form CGI that indexes (search files) to display for
selection. When you give a list of indexes to display the search form will
contain only those indexes that are in the list and can be found on that
documentation server. Any index specified that is not found on the
documentation server will not be displayed. This will create a link called
"Search" in your documents. When this link is clicked, it will open a
generic search form with only the indexes specified available for
searching if they exist.

All

lang Instructs the search form CGI in which language to display the search
form.

English

results_title Instructs the search form CGI what to display as the title of the search
results page.

“Search Results”

title Instructs the search form CGI what to display as the title of the search
form page.

“Documentation
Search Service”

Final Evaluation Report: IBM RS/6000 Distributed System

121

To include parameters in the HTML link, after the URL of the search form CGI add a question
mark (?) followed by an ampersand (&) separated list of parameters and their corresponding
values. Table 5.35 describes the parameters users can include in the link command to customize
your form.

5.3.9.12.2 Configuration File Method for Calling a Custom Search Form

Instead of listing a long list of customization parameters in the HTML link that calls your search
form, you can create a configuration file and insert all of your customization information inside
that file. The user creates the configuration file. Read permission must be set for nobody. The
configuration file path is sent to the web server. The web server reads the file and uses its
contents as if they were input as parameters in the command line. There is no local storage of the
user’s configuration file.

Table 5.36. Custom Search File Parameters. Users may customize their search by passing a
configuration file to the document search cgi script.

Parameter Description Default
columns Tells the search form CGI how many indexes to display on

each line of the search form page.
3

indexes Instructs the search form CGI that indexes (search files) to
display for selection. When you give a list of indexes to
display the search form will contain only those indexes that
are in the list and can be found on that documentation
server. Any index specified that is not found on the
documentation server will not be displayed. This will create
a link called "Search" in your documents. When this link is
clicked, it will open a generic search form with only the
indexes specified available for searching if they exist.

All

lang Instructs the search form CGI in which language to display
the search form.

English

results_title Instructs the search form CGI what to display as the title of
the search results page.

“Search Results”

search_page Redirects the web browser to another URL without changing
the HTML link in the document. Outside of the evaluated
configuration this may be used to allow users to search the
documentation at some remote site instead. In the evaluated
configuration, however, the search_page directory specified
in the HTTP configuration file overrides this command. All
references are relative to the specified directory. Untrusted
users can not modify the specification of this directory.
Trusted users are instructed not to modify the specification
of it.

None

title Instructs the search form CGI what to display as the title of
the search form page.

“Documentation Search Service”

search_top Replaces the default HTML header of the search form page
with the HTML code between the search_top_begin and
search_top_end tags. If this is specified the title parameter
(or default) is ignored.

None

search_bottom Replaces the default HTML footer of the search form page
with the HTML code between the search_bottom_begin and
search_bottom_end tags.

None

Final Evaluation Report: IBM RS/6000 Distributed System

122

Parameter Description Default
results_top Replaces the default HTML header of the results page with

the HTML code between the results_top_begin and
results_top_end tags.

None

results_bottom Replaces the default HTML footer of the results page with
the HTML code between the results_bottom_begin and
results_bottom_end tags.

None

5.3.9.12.3 Documentation Search Service

The parameters of columns and lang are not security relevant as they only affect the format of the
search or results pages that are presented to the user. The only language available in the evaluated
configuration is English.

The parameters of title, search_top, search_bottom, results_top, and results_bottom are not
security relevant as they only allow the user to specify the text that appears in the header or footer
of his search or results screen. Any text will be accepted and output in the specified area.

The parameters of config, indexes and search_page are security relevant.

In specifying the name of a configuration file a user may specify any file at all (e.g.,
/localhost/etc/security/passwd). This will cause the web server (running as nobody) to attempt to
read the referenced ‘configuration file.’ If the file is not readable by nobody then access
permission is denied and an error is returned to the user. Security is preserved since the web
server process will only gain access to the file if the file is publicly readable.

The audit trail provides adequately detailed records to trace the failed read operation back to the
individual (LUID) for whom the web server was attempting the access. For remote requests, the
LUID of the invoking user is passed to the server as a part of the TCP handshake for accepting
the connection. This is a non-standard implementation of UNIX. The protection mechanisms on
TCP/IP are explained in section 5.3.8.10, TCP/IP and UDP/IP Protection Mechanisms. The audit
event of the failed read operation is dependent upon the contents of earlier audit records as well
as attributes which were inherited from the parent process. Interpreting the actions of a process
requires that the administrator understand the actions performed by each system call that
generated an audit event and the information that is not explicitly contained within the audit
record itself. These other audit records describe the process's parent/child relationship, current
working and root directory, and the relationship of network client and server processes. The TFM
explains how to interpret each of these audit records in the context of the collection of events and
provides a worked example of tracking a user action through a network connection. The
collection of audit events recorded in association with the failed read operation together with the
explanation, instructions, and worked example in the TFM is sufficient for associating the user
identity with the failed read operation.

As stated in the table above, the parameter indexes instructs the search form CGI that indexes
(search files) to display for selection. When you give a list of indexes to display the search form
will contain only those indexes that are in the list and can be found on that documentation server.
Any index specified that is not found on the documentation server will not be displayed. In the

Final Evaluation Report: IBM RS/6000 Distributed System

123

evaluated configuration any request for an index is limited to indexes within a directory specified
in the http.conf file. This directory contains only publicly readable indexes.

The search_page parameter allows a user to specify another directory to search for index files. In
the evaluated configuration this parameter is superceded with the directory specified in the
http.conf file.

5.3.9.13 X Windows

X Windows is a graphical user interface that allows a user to make requests to an X server by
executing X client software. The X server interacts with the local keyboard, mouse, and display to
service those requests. The X server is the software that manages one or more displays, one
keyboard, and one mouse. The X client is a program that generates protocol requests using Xlib
and displays on the screen, taking input from that keyboard and mouse. A client sends drawing
and information requests to the server, and the server sends back to the client user input, replies
to information requests, and error reports.

The X Window system is not limited to a single client interacting with a single server. The X
server owns the underlying hardware resources and performs actions mentioned above on behalf
of clients by way of protocol requests. The X server can only be started from the native console
(not possible from a telnet session). The user starting the X server must be logged in to own the
resource for that session, and must own the lft (low function terminal) for the device. There may
be several clients interacting with a single server, which is the case when several applications are
displaying on a single screen. A single client can also communicate with several servers.

There are three different mechanisms used to facilitate communication between the X server and
X client software in the standard AIX product: UNIX domain sockets, AIX shared memory
transport, and Internet domain sockets. In the evaluated configuration, only one local inter-
process communication channel - UNIX domain sockets - can be used for the client/server
connection. Unix domain sockets require that the client and server to be on the same host. While
it is possible in standard AIX for the client to run on a different host connected over the network
via Internet domain sockets, it is not permitted in the evaluated configuration. For non-root users
remote access attempts are not recognized as only the root identity can connect to the necessary
ports (port 6000-6255). It is possible for an administrator to use Internet domain sockets, but the
TFM instructs administrators to not enable use of Internet domain sockets in the evaluated
configuration environment.

The user must login at the console of one of the machines in the distributed system and execute
XINIT to start the X Windows session. A user can specify permissions to allow other users access
to that user’s X Windows session over UNIX domain sockets. The SFUG contains instructions
and warnings to users as to the ramifications of granting such access permissions to other users
and recommends that the settings be 600. The X server and client both have the identity of the
user that initiated the X Windows session.

Final Evaluation Report: IBM RS/6000 Distributed System

124

The evaluated configuration contains command line parameters to allow a user to grant or deny
access to members of the user’s current effective group or to all users. The permissions parameter
is interpreted as three octal values specifying read, write, and execute permissions, similar to the
standard UNIX permission bits. The execute bit is ignored. Communications between the client
and server are always bi-directional. The only meaningful values for any of the three sets of
owner, group, and other are 0 and 6. A value of 6 grants read and write access and a value of 0
denies both read and write access.

Access to the X server via the UNIX domain socket is restricted according to permissions. The X
server does not create nor bind to the standard UNIX domain socket if permissions are not
specified. This results in this mechanism being unavailable to any user. Otherwise, when the user
specifies a permissions set other than 0, the server removes the UNIX domain socket so that a
new socket special file may be created with the correct permissions.

For the RS6000 Distributed System, the X server is in the TCB because it is used by the
administrator and is required to work correctly. The X server only executes with the identity of
the user that initiated it and is not a setuid root program. X Windows does not constitute a TCB
interface as there is no instance where the X client is in user space and the X server is in the TCB.
The X server has no privileges, even when invoked by a system administrator.

During the login process, the Terminal State Manager (TSM) program sets the permissions on the
physical devices so that the current user has exclusive rights to the devices. Object reuse is
addressed because these devices are single character, non-buffered devices, and the X server
initializes all its internal storage when it starts up. Once a log out is performed the TSM sets the
permissions to the devices to 600, making them available for the next user to login.

5.3.9.14 timed

The timed daemon is used to synchronize the clocks of the machines that make up the distributed
system. The master timed server is contained on the system that stores the shared administrative
databases for the distributed system. When timed is started on a client, it queries the master server
to receive the correct time. timed is started from the rc.tcpip initialization script on each host.
Client and server run as setuid root and utilize privileged UDP port 525. Only the root identity can
synchronize the clocks, but users can query the daemon for the time (read-only operation). timed
reads the master time and adjusts the time on the host in four minute intervals. The interval time is
adjustable using the timed configuration file.

5.3.10 Identification and Authentication
User identification and authentication in the RS/6000 Distributed System includes all forms of
interactive login (e.g., using the telnet or FTP protocols) as well as identity changes through the SU

command. These all rely on explicit authentication information provided interactively by a user.

Final Evaluation Report: IBM RS/6000 Distributed System

125

5.3.10.1 User Identification and Authentication Data Management

To ensure that the RS/6000 Distributed System is administered as a single entity, the system
maintains a single administrative database on a Network File System (NFS) server, referred to as
the administrative master server. The remaining hosts import the administrative data from the
master server through ordinary NFS client operations. The administrative files that must be shared
are specified in Table 5-1 in section 5.2.8, TCB Databases.

The system maintains a consistent administrative database by making all administrative changes
only on the designated NFS server and exporting the database files to all the other computers in
the system. A user ID on any computer refers to the same individual on all other computers. In
addition, the password configuration, name-to-UID mappings, and other data are identical on all
hosts in the distributed system.

Administrators, through the WSM administrative interface, perform changes to the files that
constitute the administrative database.

Users are allowed to change their passwords by using the PASSWD command, which is a setuid
program with the owning userid of 0. This configuration allows a process running the PASSWD

program to read the contents of /etc/security/user and to modify the /etc/security/passwd file for
the user’s password entry, both which would ordinarily be inaccessible to a non-privileged user
process. Users are also forced to change their passwords at login time, if the password has
expired.

The mounting of the master happens during the RS/6000 Distributed System boot sequence, and
the system is not in the secure state until a successful mount of the administrative data occurs. If
the mount fails, the system is inaccessible as it hangs on the mount and will remain so until the
administrator corrects the problem on the host causing the mount to fail. Once the problem is
resolved and the mount can occur successfully, the system will complete booting.

5.3.10.2 Common Authentication Mechanism

AIX includes a common authentication mechanism which is a subroutine used for all activities that
create a user session, including all the interactive login activities, batch jobs, and authentication
for the SU command.

The common mechanism includes the following checks and operations:

• Check password authentication

• Check password expiration

• Check whether access should be denied due to too many consecutive authentication
failures

• Get user security characteristics (e.g., user and groups)

The common I&A mechanism identifies the user based on the supplied user name, gets that user’s
security attributes, and performs authentication against the user’s password. The authenticate
subroutine receives the clear text password entered by the user as a parameter and compares it
against the encrypted form stored in /etc/security/passwd. A result of success indicated by a 1, or

Final Evaluation Report: IBM RS/6000 Distributed System

126

a failure indicated by a 0, is returned to the Terminal State Manager (TSM) program which
continues the login process. See section 5.3.11.1, The LOGIN program, for further details.

5.3.11 Interactive Login and Related Mechanisms
There are nine mechanisms for interactive login and similar activities:

• the standard LOGIN program for interactive login sessions on the console of a user’s local
host;

• the telnet protocol and the rlogin protocol for ordinary interactive login sessions on any
host in the system;

• the rsh, RCP and the rexec protocol for remote shell, copy, and single command
executions;

• the WSM administrative interface;

• the FTP protocol for interactive file transfer;

• and the SU command for changing user identity during a session

All of these mechanisms use the common authentication mechanism described above, but only
those that create normal interactive sessions use the standard LOGIN program; others implement
special-purpose types of sessions.

5.3.11.1 The Login Program

The LOGIN program establishes interactive user sessions. In AIX, login is part of the Terminal
State Manager (TSM) program. This program prompts for a user identity and authentication (i.e.,
password), and validates them using the common authentication mechanism described above.
Authentication prompting may also be suppressed when appropriate (e.g., rsh).

If the validation fails, the prompts are repeated until the limits on successive authentication
failures are exceeded. Each failure is considered an event that may be audited.

Login establishes a user session as follows:

1. Assigns a session identifier
2. Sets exclusive access for the controlling terminal to the process logging in
3. Calls the common authentication mechanism to check validity of the password provided

for the account being accessed, and gains the session security attributes
4. Sets up the user environment
5. Checks for password expiration and if so, prompts for password change
6. The process’s user and group identities are changed to those of the user
7. User is changed to his or her home directory
8. Invokes the user's default shell

The LOGIN program is always invoked with open file descriptors for the controlling terminal, used
when prompting for identity and authentication information, and passes control to the user's shell

Final Evaluation Report: IBM RS/6000 Distributed System

127

when the session is created. At this point, the user session is established, the user environment is
set up, and the program replaces itself, using the exec system call, with the user’s shell).

5.3.11.2 Network Login

After an initial login on the console of any host in the distributed system, access to other hosts
within the system may occur through one of seven network protocols: telnet, rlogin, rsh, rcp, rexec,
WSM, and FTP.

5.3.11.2.1 Login with telnet

The telnet protocol always requests user identity and authentication by invoking the LOGIN

program, which uses the common authentication mechanism. A user can change identity across a
telnet connection if the password for another account is known.

5.3.11.2.2 Login with rlogin

The rlogin protocol includes user identity as part of the protocol information passed from host to
host. User is not permitted to switch identity between hosts using -l option.

5.3.11.2.3 Command execution using rsh

The rsh protocol includes user identity as part of the protocol information passed from host to
host. User is not permitted to switch identity between hosts using -l option.

5.3.11.2.4 Command execution using rcp

The RCP protocol includes user identity as part of the protocol information passed from host to
host. User is not permitted to switch identity between hosts using -l option.

5.3.11.2.5 Command execution using rexec

The rexec protocol always requires the user to enter a valid user identity and password. The
authentication is performed by invoking the common authentication mechanism directly rather
than by invoking login. User can change identity if password is known.

5.3.11.2.6 WSM login

WSM is the primary administrative interface for the distributed system. When WSM is run in
remote mode, a dialog box pops up and prompts for the user name and password. The WSM
server performs explicit authentication based on that user identity and password supplied by the
WSM client.

The authentication is performed by invoking the common authentication mechanism directly
rather than by invoking login.

Final Evaluation Report: IBM RS/6000 Distributed System

128

5.3.11.2.7 File transfer using FTP

The FTP protocol is used to create a special type of interactive session that only permits file
transfer activities. An FTP session is validated and created directly by the FTP server, which then
executes all the user requests directly, as opposed to invoking a user-specified program.

The FTP server invokes the LOGIN program that uses the common authentication mechanism to
validate the user identity and password supplied through FTP protocol transactions. User can
change identity if password is known.

5.3.11.3 User Identity Changing

Users can change identity (i.e., switch to another identity) using the SU command. When switching
identities, the login UID is not changed, so all actions are ultimately traceable in the audit trail to
the originating user. The primary use of the SU command within the RS/6000 Distributed System is
to allow appropriately authorized individuals the ability to assume the root identity. In this system
the capability to login as the root identity has been eliminated. In the /etc/security/user file, login
to root is set to false for all users and SU is set to true for administrators. This allows an
administrative user to login under his/her real identity, then SU to the root identity.

The SU command invokes the common authentication mechanism to validate the supplied
authentication.

5.3.11.4 Login Processing

Permissions on the device special files control access to exclusively used public devices. When a
user successfully logs in at the local attached terminal, the TSM program changes the ownership of
/dev/lft0, /dev/kbd0, /dev/mouse0 and /dev/rcm0 to the login UID of the user and sets the
permissions on these devices to octal 600. /dev/lft0 is a logical device that provides the users
interface to the keyboard, mouse, and graphics adapter. At system initialization, /dev/lft0 grabs
the keyboard, mouse and graphics adapter devices.

The /dev/kbd0 device contains two channels for communication between the keyboard and the
device driver. Only one channel is active at any given time. The /dev/lft0 device registers for the
first channel when the system boots. The second channel is reserved for the X server. The
permissions on the /dev/kbd0 device restrict that only the user who is logged in on the console can
access this device. The logged in user could open the second channel, because he/she has
permissions. This would redirect the users own keyboard device. This would pose no threat to the
operation of the system. The worst thing that would happen is that the login process would not be
able to regain access to the /dev/kbd0 device and no other users would be able to login on the
console device until the host was rebooted.

The /dev/mouse0 device contains only one channel, which is grabbed by the /dev/lft0 device on
system startup. Attempts to open additional instances of the /dev/mouse0 device will result in an
error message.

Final Evaluation Report: IBM RS/6000 Distributed System

129

The login process executes a revoke to invalidate any open file descriptors for /dev/lft0 held by a
previous user. The revoke call modifies the file descriptors entry in the system open file table,
causing further attempts to access the device special file based on that file descriptor to return
“bad file descriptor”. This ensures that the new login session is isolated from any previous login
sessions.

5.3.11.5 Logoff Processing

When a user logs off, all files that were opened by the login shell are closed. Files and devices that
were opened by background tasks remain open. However, a background job that had access to
the console loses that access prior to the next user’s login as stated above.

The ownership of /dev/lft0, /dev/kbd0, /dev/mouse0, and /dev/rcm0 is returned to root when the
logoff occurs, with octal permissions set to 600.

5.3.12 Batch Processing
Deferred processing provides a method for commands to be executed while the user is not
physically logged in to the system. Batch processing is the facility for jobs to be scheduled and
executed. A job is a command or set of commands that performs an action on the system.

There are two methods to perform batch processing, through the use of the AT command and the
CRONTAB command and file. The AT command allows a user to schedule jobs from the command
line, and the CRONTAB facility uses a file to specify when jobs will execute.

If a job is recorded for processing, and the user who created the job is deleted from the system
before the job has run, the job will not execute. If a user account is disabled, any cron and at jobs
will execute. The TFM contains instructions for canceling deferred processing requests when a
user is removed from the system or disabled.

When a user submits a batch job, the user's effective UID, effective GID, supplementary groups,
login ID, and audit information are recorded. These values are used when the batch job is run,
ensuring that audit information is associated with the user whose session originated the request,
while using the permissions associated with the effective UID.

5.3.12.1 Batch Processing User Commands

The AT command schedules the execution of jobs based on a time value. A user submits a job; the
job is placed in a queue, and is executed when the system time reaches the start time for the job.
An AT job can be submitted with the now parameter, which causes the job to run immediately. All
output from the job is mailed to the user unless output is purposely redirected.

The BATCH command executes a job when the system load level permits. BATCH is a script that calls
the AT command with parameters specifying that the command should be placed in the batch
queue versus the AT queue.

Final Evaluation Report: IBM RS/6000 Distributed System

130

The CRONTAB command runs setuid to root and allows a user to submit, edit, list or remove CRON

jobs. The individual crontab files are stored in the /usr/spool/cron/crontabs directory. Users have
no access to this directory. Each crontab file is owned by root and group cron, with permissions:
rw- --- ---. The CRONTAB command is setuid to root to allow the untrusted user to perform submit,
edit, list or remove operations on their own crontab file.

Table 5-37. The Crontab File. The crontab file contains a list of jobs to be executed in batch
mode.

minute hour day_of_month month weekday command

When inserting a job into the crontab file, the user may use the first five fields to specify when the
job will run, as well as the job’s frequency. If the user specifies an asterisk for any of the first five
values, then all allowed values will be substituted. All allowed values for minute would be every
minute in an hour, hour includes 00 through 23, day of month includes day 1 through 31, month
includes 1 through 12, and weekday includes Sunday through Saturday, entered as 0 through 6.
Each user of the system can create and modify their own crontab files, as long as they are not
explicitly denied access to the CRON facilities.

5.3.12.2 Batch Processing Daemon

The cron daemon facilitates the execution of batch jobs. CRON is started from the rc initialization
file of each host in the system. Each host maintains its own cron daemon, crontab files and batch
processing queues. When a job is executed by CRON, a shell is started in the users home directory
that executes the command. CRON maintains a log file that reports its activities, as well as two
separate directories that store queued jobs, one for at jobs and one for crontab files. A named pipe
is used to send messages to the cron daemon when new jobs are submitted with the CRONTAB or AT
commands.

The cron daemon references four different files for AT and CRON access control decisions (at.allow,
at.deny, cron.allow and cron.deny).

Table 5-38. Control Files Referenced by the cron Daemon. The CRONTAB daemon accesses four
different files to determine whether a job can be submitted via AT or CRON.

File Purpose
at.allow Specifies which users are allowed to submit jobs using at.
at.deny Specifies which users are not allowed to submit jobs using at.
cron.allo
w

Specifies which users are allowed to use the CRONTAB command.

cron.deny Specifies which users are not allowed to use the CRONTAB

command.

If at.allow does not exist, and at.deny exists, any user not listed in at.deny is allowed to use the AT

command. If neither at.allow nor at.deny exist, only the root identity may use the AT facilities. The
same statement is true for CRON.

Final Evaluation Report: IBM RS/6000 Distributed System

131

5.3.13 Printer Services
Printer services are the commands and daemons that handle the queuing and servicing of print
jobs, both local and remote. Printer services include a collection of user commands for adding and
deleting print jobs and a collection of administrative commands and daemons to process queued
print jobs.

A print queue is an ordered list of print requests for a specific printer. The /etc/qconfig defines the
print queues available for use and the BACKEND program used to process the print jobs. The PIOBE

BACKEND command is invoked for the processing of local jobs, and the REMBAK command is
invoked for the processing of remote jobs.

5.3.13.1 Daemons Used with Printing

The qdaemon’s job is to track the print requests, and fork and exec the PIOBE or REMBAK

commands to process a print job.

The lpd daemon is a remote print server that monitors TCP port 515 for incoming print requests
from remote clients. lpd has a directory (/var/spool/lpd) where incoming requests are placed while
awaiting further processing. lpd will only accept print requests from remote machines that are
listed in /etc/hosts/equiv or /etc/hosts.lpd.

The lpd daemon calls ENQ to queue a print job that is received over the network, on the local
system. From that point on, the print job follows the path of a local print job.

5.3.13.2 Interface for Queuing Print Jobs

There are three different methods for queuing print jobs: QPRT, LP, and LPR. All three of these
commands create and queue a print job by calling the ENQ command. ENQ can also be invoked
directly to submit print jobs.

QPRT is the standard method provided with AIX, LP and LPR are provided for those familiar with
System V and BSD methods of printing.

5.3.13.3 Interface for Manipulating Print Queues

The following tasks may be performed on individual print jobs: holding and releasing the job,
moving a job between queues, canceling a job, changing the priority, or checking the status.

On the local machine, a user may affect only a print job that belongs to him/her. When a print job
is queued, a file is created in the queue directory. The user owns the file. When a command is
executed that attempts to manipulate a particular job, a check is performed to verify that the UID
that owns the file (queued print job) is the same as the UID that is attempting to perform an
action on the job or root.

Final Evaluation Report: IBM RS/6000 Distributed System

132

The owner of the print job on the remote host is the user lpd and the group printq. The job
description file for the print job contains the UID of the user that submitted the job. QDAEMON uses
this information when a request is received to cancel a job.

5.3.13.4 Print Job Processing

Print jobs can be printed to a local printer or to another host in the distributed system.

TCB

user
lp qprtlpr

enq (setuid 0)

queue

qdaemon

piobe rembak

local remote

TCP/IP
TCP
515

lp qprtlpr

enq (setuid 0)

queue

qdaemon

lpd

TCP/IP

piobe

remote

local

device
driver

printer

device
driver

printer

Figure 5.5: Local and Remote Print Job Processing

5.3.13.4.1 Local Print Job Processing

• A front-end print command such as QPRT, LPR, or ENQ initiates the request to the
appropriate queue on the local system.

• The qdaemon passes the request to the PIOBE backend on the print server.

• The piobe backend formats the data stream for printing on the specified printer and sends
the job to the printer via the device driver.

Final Evaluation Report: IBM RS/6000 Distributed System

133

5.3.13.4.2 Distributed Print Job Processing

• A front-end print command such as QPRT, LPR, or ENQ initiates the request to the
appropriate queue on the local system.

• The qdaemon on the local system processes the request by passing it to the rembak
backend program.

• The rembak program transmits the print job to a remote server via TCP/IP.

• On the remote server the lpd daemon monitors port 515 for remote print requests.

• When the lpd receives a remote print request, it places the job in the appropriate local
queue.

• The print request is then processed by the qdaemon on the print server.

• The qdaemon passes the request to the piobe backend on the print server.

• The piobe backend formats the data stream for printing on the specified printer and sends
the job to the printer via the device driver.

5.3.14 Mail
Electronic mail provides a method for users of the distributed system to exchange electronic
messages. The mail system consists of two components: a user interface and a message transfer
agent.

Each host has a directory (/usr/spool/mail) containing incoming mail. The permissions on
/usr/spool/mail are drwxrwxr-x, owned by user bin, group mail. Each user of the system may
have a file in that directory for their system mailbox. A user’s system mailbox is owned by the
user and owned by the group mail. The user’s mailbox provides the following permissions: rw-
rw- ---. A user can see that other user’s mailbox files exist, but they have no other access to those
files.

If a user has not received mail on a particular host, they will not have a system mailbox on that
host. The system mailbox is created when the user receives their first message on the host, and is
a normal file.

The .forward file is a text file located in the user's home directory, that contains a list of e-mail
addresses that incoming messages will be forwarded to. If the .forward file exists for a user,
incoming mail is automatically delivered to the address specified in the file.

The .forward file can also specify a command to forward messages. Commands executed as a
result of the .forward file are executed using the UID of the user. The VACATION command is
commonly used to reply to all incoming mail with a message stating that the current user is on
vacation and will return to the office soon.

5.3.14.1 Mail Reading

The MAIL program allows users to create, read, forward and archive messages. The MAIL program
reads the .mailrc configuration file on execution. This file allows the user to customize the MAIL

program with a number of options.

Final Evaluation Report: IBM RS/6000 Distributed System

134

The use of the mail user-interface programs (MAIL, MAIL, MAILX) require no special privilege,
because the user is only accessing his assigned, unique local system mailbox. If a user sends a
message from one of the user-interface programs, SENDMAIL is invoked to perform the message
delivery.

5.3.14.2 Mail Delivery

Users of the distributed system can send and receive messages with local users as well as with
users on other hosts. The SENDMAIL program is used to deliver messages locally and between
nodes in the system. SENDMAIL is invoked for two different purposes. The first is to act as a
daemon, and the second is to facilitate delivery of a mail message, either locally or remotely. The
version of SENDMAIL used with the distributed system is 8.8.8.

SENDMAIL references a configuration file, /etc/sendmail.cf, to identify the variables that are used
in the processing of mail and how addresses are processed for delivery. Mail headers are created
for incoming messages by SENDMAIL, using definitions contained within /etc/sendmail.cf. The
definitions consist of a series of text and macros that are translated when a message is received on
a host.

The RS/6000 Distributed System TFM provides warnings to prevent the administrator from
modifying the sendmail.cf file from the evaluated version to prevent assigning of "trusted users"
for SENDMAIL. Trusted users, as defined within SENDMAIL, have the capability of sending mail
as anyone in the system.

When SENDMAIL is executed as a daemon, it is started by the rc.tcpip script during system
initialization, and is bound to TCP port 25 and awaits TCP communications using the SMTP
protocol.

When SENDMAIL is executed as a user program, set-user-ID to root is invoked to allow
SENDMAIL to access another user’s mail file for local delivery, or open a TCP/IP connection to a
remote host on port 25 for remote delivery using SMTP. When SENDMAIL is invoked as a user
program, it accepts RFC 822 formatted e-mail messages. The interface to SENDMAIL collects text
through standard in, and formats this text as an e-mail message.

For local delivery, SENDMAIL formats the message and passes it to BELLMAIL. BELLMAIL performs
the operation of appending the message to the user’s system mailbox.

SENDMAIL contains a number of command-line options for modifying the way mail is delivered.
SENDMAIL acts as the interface for mail delivery in the distributed system, while the mail program
acts as the user’s interface to his system mailbox.

Users can access SENDMAIL directly, but cannot affect the operation of the SENDMAIL daemon
or perform any other tasks that would not be performed automatically for them during the normal
delivery of a mail message. The SENDMAIL daemon is a trusted process, executing as UID 0,
which prevents untrusted users from accessing it by any means other than the defined interface for
sending mail.

Final Evaluation Report: IBM RS/6000 Distributed System

135

Host A Host B

kernel

user

TCP/IP TCP/IP

/bin/mail,
RFC 822
formatted
message

sendmail,
uid 0

TCP Port 25

sendmail,
uid 0

/usr/spool
/mail/user

RFC 822
formatted
message

OR

Figure 5.6: Mail Communication between Host A and Host B

An untrusted user can invoke SENDMAIL with the -C command line option. The -C option
provides a method for specifying an alternate configuration file to SENDMAIL. The -C option does
not effect the correct operation of the SENDMAIL daemon that is bound to TCP port 25 and
receives mail from other hosts. The SENDMAIL daemon is a separate instance of SENDMAIL from
the one executed by the user. The -C option can only be used to effect the copy of SENDMAIL
that a user executes to deliver a mail message.

When the -C option is used, a setuid is performed to the real UID of the user. This blocks
SENDMAIL from delivering local mail or remote mail. For local mail, SENDMAIL is executing as
the user, and cannot shell and run BELLMAIL to append to a local mailbox. For remote mail,
SENDMAIL cannot connect to the remote host on TCP port 25 because the access control allows
only connections from a UID of 0. Any parameters that are specified differently in the alternate
SENDMAIL configuration file are not security relevant, because the user is not able to cause the
delivery of mail using the alternate config file.

The security of SENDMAIL is improved by implementing access control on TCP port 25 and not
allowing external network connections to the distributed system. The connection between
SENDMAIL on the local host and SENDMAIL on a remote is a TCB to TCB operation, because

Final Evaluation Report: IBM RS/6000 Distributed System

136

access control on TCP port 25 prevents connections from user ID’s other than zero. Access
control on port 25 prevents fraudulent mail messages that could be created by an untrusted user
opening a telnet session to a remote host and spoofing an SMTP session. The distributed system
may not be attached to any external networks or external network devices, such as hubs or
routers, and may not be attached to any machines that are not running the evaluated
configuration. Blocking physical access to and from other types of machines closes the network
and eliminates the potential for intrusions from outside sources.

Table 5-39. sendmail command line options. SENDMAIL has a number of command line
options. The following options are listed because they are interesting in regards to whether an

untrusted user or root can utilize them.

Command
Line Option

Description User
Allowed

Root
Allowed

-bd Invokes SENDMAIL running as a daemon, in background mode. Normal
users cannot invoke SENDMAIL as a daemon running in the
background, because the SENDMAIL command blocks this option.

N Y

-bD Invokes SENDMAIL running as a daemon, in foreground mode. N Y
-bp Prints a listing of entries in the mail queue. Y Y
-bh Prints the persistent host database. N Y
-bH Purges the persistent host database. N Y
-bi Builds the alias database from information defined in the /etc/aliases file. N Y
-bs Uses SMTP to collect mail from standard input. Y Y
-bt Starts the SENDMAIL command in address test mode. Y Y
-bv Starts SENDMAIL with a request to verify user IDs provided in the

address field of the command.
Y Y

-C file Starts SENDMAIL using an alternative configuration file. Y Y
-f Sets the name of the sender of the mail. N Y

5.3.15 Auditing
This section discusses the implementation of auditing in the evaluated configuration. The data
structures and formats are discussed first, followed by how audit is controlled, a description of bin
mode auditing, the programs used to post process the audit data, the programs used to review
audit data, audit file protection, and finally the potential for audit data loss.

Audit data is generated separately on each host in the distributed system and may be managed and
analyzed either separately on each host in the distributed system, or merged and analyzed on a
single system. AIX includes tools for pre-selecting and post-selecting audit data, viewing audit
trails, and merging multiple audit trails into one file.

5.3.15.1 Audit Record Format

The audit record consists of a header that contains information identifying the user and process
who generated the record, the status of the event (success or failure), and the CPU id for the
system. The CPU id field allows the administrator to differentiate between individual machines
when merging the contents of multiple audit trails. An optional variable length tail contains extra
information about the event, as defined in /etc/security/audit/events.

Final Evaluation Report: IBM RS/6000 Distributed System

137

Table 5-40. Audit Event Record Format. The audit record is a fixed length record that
contains information about the user who caused the event and whether the event was created due

to a success or failure. The audit record is defined in /usr/include/sys/audit.h.

Magic number for audit record.
The length of the tail portion of the audit record.
The name of the event and a null terminator.
An indication of whether the event describes a successful
operation. The values for this field are:
0 Indicates successful completion.
1 Indicates a failure.
>1 An errno value describing the failure.
The real user ID; that is, the ID number of the user who created
the process that wrote this record.
The login ID of the user who created the process that wrote this
record.
The program name of the process, along with a null terminator.
The process ID of the process that wrote this record.
The process ID of the parent of this process.
The thread ID.
The time in seconds at which this audit record was written.
The nanoseconds offset from time. (used during bin recovery to
ensure proper record ordering)
CPU identifier.

5.3.15.2 Audit Control

Audit control consists of the files used to maintain the configuration of the audit subsystem and a
description of the AUDIT command and its associated parameters.

Table 5-41. Audit Control Files. The audit control files maintain the configuration for the
auditing subsystem.

Audit Control File Description
/etc/security/audit/config Defines whether bin mode auditing is enabled and available classes
/etc/security/audit/events Defines audit events available for use on the system
/etc/security/audit/objects Contains a list of the objects whose access will be audited
/etc/security/audit/hosts Contains a mapping of CPU ids to hostnames in the distributed system
/etc/security/audit/bincmds Contains the post-processing command or commands for bin mode

auditing
/etc/security/user Specifies which classes will apply to the current user account

There are two different types of audit event selection: per-user and per-object. Per-user auditing
allows the administrator to specify specific classes of audit events that will be recorded for that
user. Each process stores a copy of the audit classes that apply to that user as part of the process
table. An audit class is a subset of the total number of audit events available.

Per-object auditing allows the administrator to specify file system objects that will be audited.
These objects can be audited based on accesses of a specified mode (read/write/execute) and
record the result of the access attempt (success/failure).

Final Evaluation Report: IBM RS/6000 Distributed System

138

The AUDIT command is used to start and stop the auditing subsystem, to temporarily switch the
auditing subsystem on or off, and to query the audit subsystem for the current audit parameters.
The AUDIT command is started from the host’s rc initialization script, as stated in the RS/6000
Distributed System TFM.

The on and off parameters of the AUDIT command enable and disable audit, without modifying the
current configuration that is stored in the kernel. The on parameter can have an additional
parameter, panic, which causes the system to shut down if bin data collection is enabled and
records cannot be written to one of the bin files. The bin mode panic option can also be specified
in /etc/security/audit/config.

When the AUDIT command is issued with the shutdown parameter, the collection of audit records is
halted, and all audit configuration information is flushed from the kernel’s tables. All audit records
are flushed from the kernel’s buffers and processed. The collection of audit data is halted until the
next audit start command is entered.

When the AUDIT command is issued with the start parameter, the following events occur:

• the /etc/security/audit/config file is read

• the /etc/security/audit/objects files is read and the objects that will be audited based on
access are written into kernel tables

• the audit class definitions are written into kernel tables from /etc/security/audit/config

• the auditbin daemon is started, depending on the options in /etc/security/audit/config

• auditing is enabled for users specified in the user’s stanza of the /etc/security/audit/config
file

• auditing is turned on, with panic mode enabled or turned off, depending on what mode is
specified in /etc/security/audit/config

5.3.15.3 Audit Record Generation

Audit record generation begins with the detection of an event, and follows the record as it
advances to storage.

Event detection is distributed throughout the TCB, both in kernel and user mode. Programs and
kernel modules that detect events that may be audited are responsible for reporting these events to
the system audit logger. The system audit logger is part of the kernel, and can be accessed via a
system call for trusted program auditing, or via a kernel procedure call for supervisor state
auditing.

The audit logger is responsible for constructing the complete audit record, including the identity
and state information and the event specific information. The audit logger appends the record to
the active bin. A bin is a file that is used to store raw audit records before they are processed and
stored in the audit trail.

Final Evaluation Report: IBM RS/6000 Distributed System

139

5.3.15.4 Audit Record Processing

Audit record processing includes a description of bin mode auditing and the backend processors
that are utilized by the audit subsystem.

5.3.15.4.1 Bin Mode Auditing

When Bin mode auditing starts, two separate bin files are allocated to store raw audit records by
the auditbin daemon. When one bin file fills, the daemon switches to the other bin file and invokes
the processing command specified in /etc/security/audit/bincmds to empty the full cache file.
When that operation is complete, auditbin notifies the kernel that it is permitted to reuse the cache
file. This mechanism of switching and emptying audit bins continues so long as auditing is
enabled. The size a bin file may reach before being considered full is defined in
/etc/security/audit/config.

auditcat
utility

auditbin
daemon

bin

Appended to

/audit/trail

User UserKernel

bin

Events

FSO Access

Events

audit events

audit objects

auditbin
controls

wakeup on full bin

auditbin system call
on empty bin, signals
a bin swap (atomic)

Figure 5.7: Bin mode auditing

The following format describes the header and tail of the bin file. A bin file begins with a header
followed directly by a tail. As audit records are stored in the bin, the tail is continuously
overwritten and rewritten at the end of the file. When the bin file reaches the full size, it is cleared
out, and the bin header and tail records are reset at the beginning of the file. At this point the file
is ready to be reused when the other bin fills.

Final Evaluation Report: IBM RS/6000 Distributed System

140

Table 5-42. Bin Header and Tail Record Format. The bin header and tail record are used to
mark the beginning and end of an audit bin, and to hold the variable length tail for an audit

event record. These structures are defined in /usr/include/sys/audit.h.

The magic number for the bin.
The version number for the bin (2)
Indicates whether the bin describes the audit trail head
or tail:
0 Identifies the bin header.
1 Identifies the bin end (tail).
2 Identifies the trail end.
The (unpacked) length of the bin’s records. A nonzero
value indicates that the bin has a tail record.
The current length of the bin’s record (might be
packed).
The time at which the head or tail was written.
CPU id

5.3.15.4.2 Backend Audit Processors

There are two backend processors available for use: AUDITCAT and AUDITSELECT. The backend
processor writes the raw audit records to the system audit trail or to a specified file after
manipulating them.

Bin mode auditing makes use of AUDITCAT and AUDITSELECT. The result of AUDITCAT or AUDITSELECT

can be directed to a file for permanent audit storage.

5.3.15.4.2.1 auditcat

The AUDITCAT command reads audit records from standard input or from a file, and processes the
records and sends them to standard output or to the system audit trail.

5.3.15.4.2.2 auditselect

The AUDITSELECT command can be used as both a pre-processing and post-processing tool. As a
pre-processing tool, the AUDITSELECT command serves the same purpose as AUDITCAT, but adds the
ability to specify conditions that an audit record must meet. This allows a system to be configured
to save audit records that relate to login in one file, and audit records that relate to file access in a
separate file.

AUDITSELECT utilizes an expression to apply against the current audit record. The expression
consists of one or more terms joined by the logical operators && (and), || (or) and ! (not). Each
term in the expression describes a field, a relational operator and a value.

The following is an example expression to select all the FILE_Open events:

event==FILE_Open

The event field identifies that AUDITSELECT should query based on the name of the event. The
operator is equal and the name of the event is FILE_Open.

Final Evaluation Report: IBM RS/6000 Distributed System

141

Table 5-43. Available Fields. The available fields are used to build expressions with
AUDITSELECT.

Field Definition
event Name of the audit event
command
result

Status of the audit event. The value of the result field must be one of the following: OK, FAIL,
FAIL_PRIV, FAIL_AUTH, FAIL_ACCESS, or FAIL_DAC. FAIL matches all other error
codes.

login ID of the login user of the process that generated the audit event.
real ID of the real user of the process that generated the audit event.
pid ID of the process that generated the audit event.
ppid ID of the parent of the process that generated the audit event.
tid ID of the kernel thread that generated the event.
time Time of day the audit event was generated.
date Date the audit event was generated.
host Hostname of the machine that generated the record. The reserved name UNKNOWN can be

used to match any machines that are not listed in the /etc/security/audit/hosts file.

5.3.15.5 Audit Review

Two different commands exist for the review of audit records in the distributed system: AUDITPR

and AUDITSELECT.

The AUDITPR command formats audit records to a display device or to a printer for review. The
AUDITPR command also allows the administrator to select which of the fields to include in the
output as well as the order to display them. The fields available for inclusion with the output of
the AUDITPR command are listed in the following table.

Table 5-44. Available Fields From AUDITPR. These fields are are available for output from
AUDITPR.

audit
event

user’s
login
name

event
status

time the
record

was
written

command
name

real user
name

process
ID

ID of the
parent
process

kernel
thread ID

name of
the host

that
generated
the audit
record

event
specific
tail data

The default values are the audit event, the user’s login name, the audit status, the kernel thread ID
and the command name

AUDITSELECT allows the administrator to build an expression that will be applied to the stored audit
records. The details of the AUDITSELECT command are listed in section 5.3.15.4, Audit Record
Processing.

The AUDITMERGE command provides a method of combining multiple audit trail files into a single
audit trail file. These multiple files can come from different hosts in the system, providing a
centralized audit analysis function. As the two files are processed, the record with the oldest time
stamp that still remains is written into the audit trail. This process continues until there are no
more audit records to process. The TFM directs the system administrator to transfer the audit files
to be merged to the same host.

Final Evaluation Report: IBM RS/6000 Distributed System

142

5.3.15.6 Audit File Protection

The audit trail files, configuration files, bin files, and the /audit directory are protected on each
system using normal file system permissions. Each audit file grants read access to the root user
and the audit group, and write access to only the root user. The RS/6000 Distributed System
TFM instructs the administrator that if the cached and permanent audit trails are kept other than
in the /audit directory, then the alternate directory must be protected from access by non-root
users.

5.3.15.7 Audit Record Loss Potential

Bin mode auditing is susceptible to the exhaustion of disk space available to the /audit directory
or to a system crash. In the case of a system crash, all data in physical memory is lost, including
any audit records that had not yet been flushed to disk. The audit subsystem enforces a 32K byte
limit on the size of an individual audit record, and only one audit record can be in transit between
a thread and the kernel at any given time.

The RS/6000 Distributed System TFM includes instructions to the administrator to back up all
files, including audit data, on a regular basis to avoid the loss of data due to hard disk failures.

5.3.15.7.1 Audit Record Loss Potential for Bin Mode Auditing

The RS/6000 Distributed System provides a panic mode for use with bin mode auditing. The
panic mode option halts the host when the current audit bin stops accepting additional records,
preventing the unnecessary loss of audit records. This only occurs with the exhaustion of disk
space. If a host halts because it cannot collect audit records, the other hosts in the distributed
system are not affected, unless the host is acting as the administrative master. The RS/6000
Distributed System TFM contains instructions for enabling panic mode, as panic mode is not
enabled by default.

The result of halting the system because panic mode was invoked would be the loss of any audit
data presently in the host’s memory that had not been written to disk. In addition, audit records
could be lost for operations that were underway but had not yet completed generating audit
records. This minimizes the damage caused by the lack of disk space, because only the audit
records that are currently in memory are lost.

A recovery process for audit bins exists in the evaluated configuration. If either of the bin files is
not empty when audit is started, the auditbin daemon executes the bin mode post-processing
command to process the bins.

The amount of audit data that can be lost in bin mode is minimized by the use of the binsize and
bytethreshold parameters in the /etc/security/audit/config file. The binsize parameter sets the
maximum size a bin may reach before the auditbin daemon switches to the other bin, and executes
the bin mode post-processing command. The bytethreshold parameter sets the amount of data in
bytes that is written to a bin before a synchronous update is performed. The RS/6000 Distributed
System TFM states that the binsize and bytethreshold parameters should be set to 64K bytes each

Final Evaluation Report: IBM RS/6000 Distributed System

143

to minimize audit data loss. The amount of audit data that could be lost due to a failure in bin
mode is the combination of these two files, or 128K bytes.

5.3.15.8 Administrative Auditing

The root user can have any of the classes defined in /etc/security/audit/events enabled. This
provides auditing of all the normally defined system functions. Events exist that audit changes to
the TCB databases.

The TCB_Exec event audits actions performed by the root user. The TCB_Exec event is
triggered when a process created by root performs an exec. The exec system call detects if the
effective user-id is equal to zero, and writes this audit event if it is enabled. This capability allows
for the auditing of all administrative actions on the system.

5.3.16 Initialization and Shutdown
The RS/6000 Distributed System consists of one or more computers, each of which can be in a
multi-user mode, single-user mode, or can be powered off.

The order in which computers are brought online is important. The administrative master of the
RS/6000 Distributed System must be booted before any other computer in the system can be
powered up and used. This is because the administrative databases are NFS-mounted from the
master server. Other computers may be booted to perform maintenance, but users will not be able
to login. The boot process will not complete for administrative clients until the master server and
its databases are available.

The secure initial state for AIX has been reached before display of the login prompt but after a
series of initialization related tasks. These tasks include the initialization of privileged ports above
1024 and TCP socket ACLs, the configuration of the NFS subsystem, the mounting of the
distributed I & A files, the initialization of audit logging, and the re-execution of the DACINET

configuration commands to update protection methods for dynamic services (mountd, statd and
lockd).

5.3.16.1 Boot Methods

In the evaluated configuration, (as described in the TFM) AIX must be booted from a boot image
on the local hard disk.

A boot password can be set, but this password is not relied upon for the enforcement of any
policies with respect to the evaluated configuration. When the power button is pushed, users are
only allowed to boot the system as initially installed. If a user has knowledge of the boot
password, the user is still restricted to booting the system using the default media. To boot the
system differently requires knowledge of the Privileged Access Password (PAP). The TFM
contains installation instructions requiring the administrator to set the PAP and to protect that
password from non-root users as this password is critical to maintaining the integrity of the TCB.

Final Evaluation Report: IBM RS/6000 Distributed System

144

5.3.16.2 Boot Image

The file system that is used during the initial boot phase is located in a special logical volume
known as the Boot Logical Volume (BLV). The default logical volume name is /dev/hd5,
although this name is not required to be used by the system.

This logical volume has a file system type of boot and is updated by the BOSBOOT command. Files
that are contained in the BLV are copied from the run-time file system, converted into a
compressed file system image and copied to the BLV. Only the administrator may modify the
BLV as the file system permissions for the device deny read or write access to any other users.
Changes to the RAM file system during the initial boot phase are not copied back to the BLV
making the BLV file system image read-only. The RAM file system acts as a mini-root file system
during the boot process.

The boot logical volume consists of the following components:

• Boot record

• SOFTROS software used to complement the CHRP open firmware Read Only Storage
(ROS) on the CPU board.

• Boot image, consisting of the AIX kernel and a RAM file system.

• Optional base customized area.

It is this boot image (the data on the boot logical volume) that is then used to bootstrap the
system. The boot code found in the BLV is used to load the kernel and to mount the RAM file
system into memory. This RAM file system is memory-resident and contains all programs that
allow the boot process to continue. This file system does not exist outside of the boot process.

Administrators can reconstruct the BLV by bringing the system up in maintenance mode and
using the BOSBOOT command.

5.3.16.3 Boot Process

During the boot process, the system tests the hardware, loads and begins execution of AIX, and
configures devices. As described above, the boot code found in the BLV is used to load the kernel
and to mount the RAM file system into memory. Once all of the devices associated with the root
volume group are configured, the volume group can be initialized, the real root file system can be
mounted and the RAM file system is discarded.

For an individual computer, the boot process consists of the following steps when the CPU is
powered on or reset:

1. The CPU initializes and performs its internal Built-In Self-Test (BIST).
2. On the 43P and F50, the CPU then executes the power-on self-test (POST) code.

On the S70, the Service Processor sets up the hardware as a RS/6000 and runs POST.
3. The CPU executes the CHRP Open firmware (also known as ROS) for the platform.

Final Evaluation Report: IBM RS/6000 Distributed System

145

4. The Open Firmware finds the SOFTROS code in the boot image (/dev/hd5 by default),
and runs SOFTROS to perform additional initialization to provide an environment for
AIX. (This is CHRP-compliant code loaded from the system’s hard disk storage.)

5. SOFTROS reads in the boot control block from disk storage.
6. The Boot Loader loads the AIX kernel and RAM file system, and transfers control to the

kernel initialization code. The kernel creates process 0, which boots the system, then
becomes the swapper.

7. The kernel initializes its data structures, and starts the Simple Shell (/usr/lib/boot/ssh) as
init.

8. Phase 1 Boot. Phases 1 and 2 run from the RAM file system. In Phase 1, the ssh (init)
expands the RAM file system, restores saved device configuration information, and calls
the configuration manager cfgmgr to perform its first phase duties. At various locations
throughout the boot process it displays different values to the LEDs to indicate boot
status.

9. Phase 2 Boot. The root volume group is initialized, base file systems are mounted, and
fsck is run. If a dump is present from a previous boot, maintenance mode is entered to
allow the dump to be captured if required. The base paging logical volume is initialized
and paging is started.

10. Phase 3 Boot. Between phase 2 and phase 3, the RAM disk is destroyed and init is the
real init. It runs through /etc/inittab, the first item being /sbin/rc.boot 3. This runs phase 3
of rc.boot which does initialization using the real file system. The /tmp file system is
mounted and fsck run. The last phase of cfgmgr is run, dump devices are defined, lock
files are removed and daemons like syncd and errdemon are started.

11. At this point control is passed to /etc/rc to continue booting.
a. Run rc.powerfail
b. rc starts multi-user mode, initialization of volume groups, page space activation, dump

file designation, file system check (fsck)
c. Execute fbcheck to determine if this is the first time AIX has been booted. If it is the

first time, a license agreement is displayed.
d. Start System Resource Controller (srcmstr) daemon
e. Initialize privileged port extension and TCP socket ACLs
f. init runs rc.tcpip to start the network daemons
g. rc.nfs is executed to configure the NFS subsystem
h. Executes the script /etc/rc.C2 to mount the distributed administrative files (if this step

fails, the system will hang waiting on the NFS mounts to become available;
administrative intervention must be performed in order to correct the problem and
make the machine available for multi-user mode). Once this step has been performed,
the system has all of the defined users and known hosts available via the NFS mounts.

i. Start cron
j. Start getty
k. Start startsrc

Final Evaluation Report: IBM RS/6000 Distributed System

146

l. Last step is re-executing the DACinet configuration commands since name resolution
is performed with the NFS mount and port protection definitions may contain
hostnames and user IDs. This also configures port protection for the dynamic RPC
servers.

12. getty puts up a login prompt.

5.3.16.4 Shutdown

The SHUTDOWN or REBOOT commands can be used by the administrator to bring services and the
system off-line gracefully (these commands are restricted to the root identity). The TFM warns
administrators to only use the SHUTDOWN command and not the REBOOT command in the evaluated
configuration.

During the default shutdown, users are notified of an impending system shutdown with a message.
After the administrator-specified number of second’s elapse, the system stops the accounting and
error logging processes and writes an entry to the error log. The SHUTDOWN command then runs
the KILLALL command to end any remaining processes and runs the SYNC command to flush all
memory resident disk blocks. Finally, it UNMOUNTS the file systems and calls the HALT command.
Shutdown is not complete until users receive a shutdown completion message. Attempting to
restart or turn off the system before the shutdown completion message is displayed may result in
file system damage.

The SHUTDOWN command supports a number of flags to control how the system is to be brought
down. By default it will warn users, wait one minute, terminate active processes, synchronize the
file systems, and halt the CPU as described above. An administrator has the option to restart the
system immediately after shutdown, perform a fast shutdown (bypassing display of messages to
users and bringing the system down as quickly as possible), and bring the system down to
maintenance (single-user) mode.

5.4 TCB Support
This section identifies TCB software components in the RS/6000 Distributed System that are in
the TCB because they have the ability to affect correct operation of the TCB, but which have no
specific security responsibilities. These components do not implement or support security policies
or maintain security-relevant databases.

5.4.1 Internal Daemons
The TCB contains numerous processes that are always running but that do not have specific
security responsibilities. Some run entirely in the kernel, called kprocs; others are started during
initialization and run as ordinary processes. None are security relevant.

kprocs are primarily concerned with buffering and synchronization. Additionally, each CPU has
an idle process that runs when no other process needs the CPU. The non-kernel daemons support
buffering, synchronization, and logging.

Final Evaluation Report: IBM RS/6000 Distributed System

147

5.4.2 Uninteresting Trusted Processes
Some TCB programs in the RS/6000 Distributed System are in the TCB only because they are
required for performing administration or system initialization. These have no responsibility for
implementing specific security policies or maintaining specific security databases, but they are in
the TCB because they are used in a privileged environment and have the potential for affecting the
correct operation of the TCB.

Because they have no security responsibilities other than not acting maliciously, they are termed
uninteresting. The RS/6000 design documentation identifies all these programs. Typically they are
file-oriented utility programs such as LS, VI, GREP, and CAT.

Some uninteresting TCB programs have privileges that are active when an administrative user
uses the program. Although this privileged identity allows the command to override normal
security policies, they still have no explicit security responsibility even when operating with these
privileges. When used by an ordinary user, these programs never have privilege. For a complete
list of all trusted processes in the evaluation configuration, see Appendix H, Trusted Programs.

5.4.3 TCB Libraries
Most libraries are included in the TCB simply because they are invoked and hence execute as part
of one or more TCB processes. The same library, executing as part of a non-TCB user process, is
untrusted code. A library can be used both by TCB and non-TCB code, and is trusted when it
executes in the context of a TCB process and is untrusted when it runs in the context of a non-
TCB process.

Any TCB program that runs without privilege must ensure that it is only running with libraries
that are explicitly included in the TCB. This is done by providing a TFM warning for
administrators not to change the LIBPATH environment variable.

Final Evaluation Report: IBM RS/6000 Distributed System

148

6. TCB RESOURCES
This chapter identifies the RS/6000 Distributed System resources and outlines the security policies
applicable to them. This discussion includes all resources that are accessible to subjects operating
on behalf of ordinary users and sharable among subjects with different security characteristics. It
does not include internal resources (such as internal TCB structures) that are only accessible by
trusted subjects; nor does it include resources (such as administrative data) that only
administrators may manipulate.

Most resources are subject to security policies that may result in different access being granted to
different users or subjects, and are therefore subject to the discretionary access control policy. A
few resources (e.g. unnamed pipes) are dynamically shared only among subjects with equivalent
security attributes, but because different subjects serially reuse them, it is important to consider
them as resources for the purposes of object reuse.

6.1 Resource Characteristics
Table 6-1 characterizes each resource in terms of how an instance of the resource is created, the
nature of the Discretionary Access Control policy that applies to the resource, and whether the
resource is a named object. The column headings, Create, Named and O.R. Method, are defined
in sections 6.1.1, Creation; 6.1.4, Named Objects; and 6.1.3, Object Reuse respectively. Details of
the protection policy for resource types are specified in Chapter 7, TCB Policies.

6.1.1 Creation
Each resource is created (or allocated from the system’s set of instances) by either an ordinary or
administrative user.

User: A subject operating on behalf of an ordinary user may create resource instances.
Programming interfaces usable by untrusted subjects may create resources of this type. Although
for many, commands are the conventional interface mechanism.

Administrator: Only an administrative user or a TCB subject may create instances of the
resource. Although these resources may also be created by a variety of programs, administrators
are required to use only the programs (e.g. commands) permitted by procedures defined in the
TFM, and are not permitted to exercise arbitrary programming interfaces.

6.1.2 Discretionary Access Control
The RS/6000 Distributed System enforces a discretionary access control policy for all named
objects. While the enforced DAC policy varies among different object classes, in all cases the
policy is based on user identity. To allow for enforcement of the DAC policy, all users must be
identified and their identities authenticated.

Final Evaluation Report: IBM RS/6000 Distributed System

149

Under the generally enforced policy, subjects (i.e., processes) are allowed only the accesses
specified by the class-specific policies. Further, the ability to propagate access permissions is
limited to those subjects who have that permission as determined by the class specific policies.
Finally, a subject with an effective UID of 0 (i.e., the root identity) is exempt from DAC
restrictions and can perform any action.

6.1.3 Object Reuse
All resources are protected from Object Reuse (scavenging) by one of three techniques: explicit
initialization, explicit clearing, or storage management. This section describes how AIX prevents
improper reuse of residual data for each class of object identified in section 6.1.4, Named Objects
and section, 6.1.5 Storage Objects. It addresses only those objects directly visible at the TCB
interface and is not concerned with internal operating system structures. Three general techniques
are used to meet this requirement:

• Explicit Initialization: The resource’s contents are explicitly and completely initialized to
a known state before the resource is made accessible to a subject after creation. An ‘I’ in
the object reuse column in Table 6-1 indicates explicit initialization.

• Explicit Clearing: The resource's contents are explicitly cleared to a known state when
the resource is returned to the TCB for re-use. A ‘C’ in the object reuse column in Table
6-1 indicates explicit clearing.

• Storage Management: The storage making up the resource is managed to ensure that
uninitialized storage is never accessible. An ‘M’ in the object reuse column in Table 6-1
indicates storage management.

6.1.4 Named Objects
In the RS/6000 Distributed System a named object is one whose intended use exhibits the
following characteristics:

• may be used to transfer information between subjects of differing user identities within the
TCB.

• a specific instance of the object must be requestable by subjects.

• The name used to refer to a specific instance of the object must exist in a context that
allows subjects with different user identities to request the same instance of the object.

• The intended use of the object is for sharing of information across user identities.

The named objects in the RS/6000 Distributed System are designated within Table 6-1 with a ‘Y’
in the “Named” column.

6.1.5 Storage Objects
For the purposes of satisfying the Object Reuse requirement, all identified resources in the
RS/6000 Distributed System are considered storage objects. Adequate controls are in place such
that no resources permit an unprivileged subject to see residual information.

Final Evaluation Report: IBM RS/6000 Distributed System

150

All the resources identified within Table 6-1 are considered storage objects for the purposes of
object reuse.

Table 6-1. Object Summary. Each resource in the RS/6000 Distributed System was analyzed in
terms of how an instance of the resource is created, the nature of the Discretionary Access

Control policy that applies to the resource, and whether the resource is a named object.

Resource9 Type Create Named O. R. Method
Ordinary Files user Yes I,M
Directory user Yes I
Directory Entries user No C
Symbolic Links user No I
Character Device Special Files admin Yes I
Block Device Special Files admin Yes I
Named Pipes user Yes I
Unnamed Pipes user No I
UNIX Domain Socket Special File user Yes I
System V Shared Memory user Yes I
System V Message Queues user Yes I
System V Semaphores user Yes I
Printer Queue Entries user No I
At Queue Entries user No I
Crontab Queue Entries user No I
Process (includes context and address space) user No I,M
Datagrams user No I
Mail Files user No I
UDP datagrams, TCP connections user No I,M
X Windows Resources user No C
Printer DRAM user No C
Frame Buffer user No C

6.1.6 Public Objects
Public objects can be read by all subjects and written only by trusted processes. At the C2 level of
trust these objects are not security relevant because they are not named objects and therefore do
not require DAC. Furthermore, these objects have no object reuse concerns because they are

9 TCP/IP Ports: These are addresses used to identify TCP services. They do not have the capability of storing
information and are therefore not considered objects.

Internet Domain Sockets: This term refers to a socket that is bound to an Internet address and protocol. Sockets
contain no information. They are abstractions used in communication, but are not intended for (and cannot be)
used for controlling sharing of information. Rather, any sharing that occurs using these mechanisms is of necessity
the result of a prior agreement between the two communicating peers. The need for prior agreement is inherent in
the definition of the network communication protocols supported by the RS/6000 Distributed System. A socket is a
privately owned endpoint for communications; that is they are only sharable by inheritance, and cannot be named
or manipulated by processes that do not have access to them already. Because the socket interface and the
underlying protocols are defined to provide communication with arbitrary peers, without controls by user identity,
DAC is not appropriate for these IPC mechanisms.

Final Evaluation Report: IBM RS/6000 Distributed System

151

public objects. An example of this class of objects for the RS/6000 Distributed System is the
system timer. The system timer is set by the TCB and is readable by everyone.

6.2 Users
A user is a person who has been identified to the RS/6000 Distributed System by an administrator
and is authorized to use the systems facilities.

6.2.1 User Roles
There are two types of users within an IBM RS/6000 Distributed System: ordinary and
administrative users. Only administrators can create and destroy user accounts. Administrators
use the Web-based System Manager (WSM) utility to perform account creation and maintenance
operations, as well as other administrative functions required to keep the system operational.

6.2.2 User Attributes
Users have security attributes that govern the set of system facilities they may employ. This
section describes those attributes and their maintenance. Other sections, such as those in Chapter
5 that describe the I&A process, describe how the attributes are used in making security
decisions.

User attributes include security relevant information (e.g., one way encrypted password, identity,
permissions), administrative limitations (e.g. CPU time and memory quotas), and general
information (e.g., the user’s full name). Some security-relevant user attributes (e.g., one-way
encrypted password) are sensitive and may only be viewed by an administrator. All other user
attributes are publicly visible.

6.2.2.1 Identity

A user is identified by a human-readable user name, which is administratively assigned. Each user
name corresponds with a unique numeric user identity or UID. A one-to-one correspondence
exists between the set of user names and the set of UIDs across the distributed system via the
NFS-mounted database mechanism described in Section 5.3.10, Identification and Authentication.

Final Evaluation Report: IBM RS/6000 Distributed System

152

Table 6-2. Reserved UIDs.

User Name User ID Description
root 0 This user has the ability to perform all system administrative tasks. Users cannot login to

this account,. They must login to their own account and su to the root identity.
nobody -2 This identity is used in the evaluated configuration by the HTTP server. While the

evaluated configuration includes NFS, “nobody” is not used in that capacity for the
evaluated configuration.10 Since the evaluated configuration is a closed distributed
network with one name spaced across the system, identity mapping is not performed and
has not been analyzed as part of this evaluation.

daemon 1 This user does not own any files, programs or directories in the evaluated system.
bin 2 This user owns a number of system binaries and the directories which hold them.
sys 3 This user owns the crontab file for user sys which performs no operations.
adm 4 This user owns the /var/adm/streams directory as well as the /var/adm/wtmp system

account file. This user also owns the crontab file for user adm.
5 Not used in the evaluated configuration but reserved for standard AIX.

100 Not used in the evaluated configuration but reserved for standard AIX.
lpd 9 This user is used by the printer queuing subsystem. Users can neither login nor su to this

account.
6 Not used in the evaluated configuration but reserved for standard AIX.

All security-relevant decisions are made on the basis of the user identity. A user must enter the
user identity, along with a valid password, to gain access to the system. The user identity is the
basis of all DAC decisions, and the user identity is stored within audit records to maintain user
accountability.

The user identity root (i.e. UID 0) is the only privileged account within the evaluated
configuration. It is possession of the root identity and password that distinguishes an
administrative user from an ordinary user. Possession of the root identity allows a user access to
administrative data and files that are critical to the correct operation of the TCB. For the
evaluated configuration, it is not possible to login directly as the root identity. The administrator
must first login using a valid ordinary user account and then perform an SU to change their identity
to the root identity.

Reserved user IDs are used throughout AIX to indicate ownership of various system files,
directories and programs. The RS/6000 Distributed System was evaluated with all of these
reserved administrative identities disabled for login, and except for the root identity, disabled for
su.

6.2.2.2 Groups

In addition to the user identity, a user is associated with one or more groups, each of which also
has an administratively assigned group name that translates to a numeric group identity or GID
for system internal use. The set of GIDs is the same across the distributed system via the NFS-

10 Typically the “nobody” identifier is used to indicate a file that was created by root on an NFS file system that
does not map the client’s root user to the server’s root user.

Final Evaluation Report: IBM RS/6000 Distributed System

153

mounted database mechanism described in Section 5.3.10, Identification and Authentication. The
primary use of groups is in DAC decisions.

Table 6-3. Reserved GIDs.

Name Group ID Description
system 0 This group controls a number of administrative functions, such as shutting down the

system, mounting file systems. The system group additionally owns a number of system
files and directories.

nobody -2 This group is not used in the evaluated configuration. Even though the evaluated
configuration includes NFS, it is a closed distributed network and as such group identity
mapping is not performed and has not been analyzed as part of this evaluation. There is
one group name space across the distributed system and so group name resolution is
explicit.

staff 1 This group does not own any files or programs in the evaluated configuration. It exists
for compatibility with the non-evaluated version of AIX.

bin 2 This group owns most of the unprivileged system binaries as well as the directories which
hold those files.

sys 3 This group owns a number of system configuration tools primarily in the /usr/lib/ras and
/usr/sbin directories.

adm 4 This group owns a number of directories that contain administrative data, such as system
logs and accounting information.

5 This group does not own any files or programs in the evaluated configuration. It exists
for compatibility with the non-evaluated version of AIX.

mail 6 This group owns the programs and directories that are associated with local mail
processing. The program BELLMAIL is used to read and deliver local mail.

security 7 This group owns the programs, directories and files that contain the I&A information
and file management. Many of the programs are restricted to group security execution
only and may only be executed by the root user in the evaluated configuration.

cron 8 This group owns the programs, directories and files that contain and administer the atjob
and crontab information.

printq 9 This group owns the programs, directories and files that contain and administer print
jobs, print queues, batch queues and other queuing related functions. Many of the
programs are restricted to group printq execution only and may only be executed by the
root user in the evaluated configuration.

audit 10 This group owns the programs, directories and files that contain and administer the
auditing functions of the system. Many of the programs are restricted to group audit
execution only and may only be executed by the root user in the evaluated configuration.

ecs 28 This group does not own any files or programs within the evaluated system. It exists for
compatibility with the non-evaluated version of AIX.

100 This group does not own any files or programs in the evaluated configuration. It exists
for compatibility with the non-evaluated version of AIX.

20 This group does not own any files or programs in the evaluated configuration. It exists
for compatibility with the non-EVALUATED version of AIX.

6.2.2.3 Authentication

Associated with each user identity is a hashed (one-way encrypted) password for login
authentication. In addition, there are many password quality parameters (governing such things as
password length, prohibited passwords, number of alphabetic characters) and password expiration
parameters (governing when the password expires, how long before it can be reused, how long
after the password has expired it can be changed).

Final Evaluation Report: IBM RS/6000 Distributed System

154

Each user entry includes account usage parameters governing account expiration, times of use,
from what terminals, the time and location of the last login and batch job execution, and the
number of login failures since the last successful login attempt. There exists a set of parameters
that govern whether the su utility can be used to change to this user identity, and who may
perform such changes. In addition, each user entry has a flag that may be set by an administrator
to disable a user account.

6.2.2.4 Audit Control

Each user entry has a list of audit classes specified for the audit events to be recorded for the user.
All auditable events (as pertains to the audit class specified for that user) performed by processes
created on behalf of that user will generate audit records.

6.2.3 User Database

User security attributes are stored in /etc/security/users, /etc/security/passwd, and /etc/passwd.
Only administrators can read /etc/security/user and /etc/security/passwd. All users can read
/etc/passwd so that untrusted software can obtain needed information, but only administrators can
write to it. As explained in section 5.3.10, Identification and Authentication, the contents of
/etc/security (and other configuration data) are stored on one host of the distributed system, and
are NFS-mounted on all other hosts to maintain consistent administrative information.

In a correctly administered system (i.e., one that is administered following the guidance in the
TFM), every user will have one entry in /etc/passwd, one in /etc/security/user, and one in
/etc/security/passwd. None of these files will have entries for users who do not also appear in the
other files.

Table 6-4 describes the security relevant user attributes. These security attributes can only be set
or viewed by administrators using the WSM utility. AIX’s file locking mechanisms prohibit the
modification of these database entries by more than one administrator.

In addition to the above parameters, /etc/security/environ defines the initial set of environment
variables for each user, and /etc/security/limits defines resource limits for each user (e.g., the
maximum file size, the maximum amount of memory available to processes). For non-
administrative users, these parameters are not security relevant. For administrators, the
environment variables must be set appropriately (e.g., the variables that control search paths for
programs and shared libraries must point to only IBM-provided directories and files).

Final Evaluation Report: IBM RS/6000 Distributed System

155

Table 6-4. User Security Attributes.

Attribute Description Stored in:
user name A one to eight character unique identifier. /etc/passwd
UID A unique numerical value associated with the user name. This

value is associated with any session created for the user.
/etc/passw

primary GID The initial GID associated with the user. /etc/passwd
supplementa
l GIDs

Additional GIDs associated with the user name. /etc/group

current
password

The user’s current password. dummy value in
/etc/passwd,
real password in encrypted
form in /etc/security/passwd

password
quality
parameters

A set of parameters that govern the minimum password length,
the minimum number of alphabetic characters, a dictionary of
prohibited passwords.

/etc/security/passwd

authenticatio
n method

A set of parameters governing how users are to be authenticated.
In the evaluated configuration there is only one method.

/etc/security/user and
/etc/security/login.cfg

password
expiration
parameters

A set of parameters that govern when the password expires, how
long before it can be reused, how long after the password has
expired it can be changed.

/etc/security/user

account
usage
parameters

A set of parameters that govern when the account expires, what
times of day and days of the week it can be used, what terminals it
can be used from.

/etc/security/user and
/etc/security/login.cfg

user change
parameters

A set of parameters that govern whether the su utility can be used
to change to this user identity, and who may perform such
changes.

/etc/security/user

audit classes A list of audit classes for which audit events are to be recorded for
the user.

/etc/security/audit/config

umask Contains default file permissions. /etc/security/user

6.3 Subjects
In the RS/6000 Distributed System, processes are the only subjects. Every process has a unique
process identity (PID) relevant to the host on which it executes. A process consists of an address
space, with one or more threads of execution, on a specific host machine. Processes cannot
execute across multiple hosts, so it is the combination of the PID and host name that ensure
uniqueness of process identity across the distributed system. PIDs may be reused over the lifetime
of the system, but there are never two simultaneously existing processes with the same PID on the
same host.

Final Evaluation Report: IBM RS/6000 Distributed System

156

6.3.1 Identity Attributes
The following security-relevant user and group identifiers are associated with each process:

• Login UID: is the UID of the account used to log in to the system. It never changes as
long as the user is logged in. This is the UID stored in audit records.

• Real UID and GID: is the UID of the account for the user of the system. It changes
whenever a the user successfully issues the su command. It can also be changed by a
process running as root issuing the setuid subroutine.

• Effective UID and GID: is the same as the real UID/GID unless the process has executed
a setuid program.

• Saved UID and GID: These values are set to the values of effective UID and GID at the
time of process creation. For unprivileged programs, these are the UID and primary GID
of the user. For setuid or setgid programs, these values are used to restore the effective
UID/GID upon return from a setuid program.

• Supplementary group Identities: Additional GIDs associated with the user (beyond the
real GID). Set as part of the login process; normally not changed. There can be up to 32
supplementary GIDs. The supplementary GIDs are used in access control decisions.

6.3.2 Additional Process Security Attributes
Additional security relevant attributes of processes include:

• Process state: The current state for each process includes the set of associated threads
(where the default is one thread per process) and the attributes enumerated below. For
each thread, state information includes the address of the next instruction to be executed
(i.e., the program counter or Instruction Address Register) as well as all general purpose
and floating point registers.

• Open file descriptors: Every process has a list of open file descriptors that are accessible
by the process.

• Session ID: Every process has an associated session ID, which is the process ID of the
process group leader. This value is used to determine which process will receive
unsolicited notifications of process termination.

6.3.3 Privilege Attributes
In the credentials structure11 for each process are four privilege sets as well as all relevant
identification information (real, effective, and saved user and group ids and login user id) for that
process.

11 The credential structure is discussed in section 5.3.2, Process Management.

Final Evaluation Report: IBM RS/6000 Distributed System

157

The privilege sets are, respectively:

• Effective

• Inherited

• Bequeathed

• Maximum

Processes running as the root identity (directly or via setuid-root) have all privilege bits enabled in
all four of the above privilege sets. Processes running as a non-root identity have none of the
privilege bits set in any of the privilege sets and have no ability to gain privilege when a system is
properly installed and administered in accordance with the TFM. See Section 7.2, Privileges for
additional information regarding the privilege policy for AIX.

6.4 File System Resources Security Attributes
This section describes the common attributes for file system object types. Then it describes the
attributes that are special to, or specially interpreted for, different object types.

6.4.1 Common File System Resource Attributes
This section describes the attributes that are common to all types of file system objects and that
have common meaning for those types. Their general meaning and behavior are described here;
details are addressed in the per-type subsections that follow. Note that the security control
policies based on these attributes are described in detail in Chapter 7. When policies are
mentioned here, it is only done to give some context to the descriptions.

• Owning user ID: This is the effective user ID of the subject that created the object. In
general, it governs the ability to manipulate object attributes.

• Owning group ID: This is either the effective group ID of the creating subject or the
owning group ID of the directory in which the object was created.

• Base Permissions Bits: This is a 9-bit string specifying three possible modes of access
(‘read,’ ‘write,’ and ‘execute’) to the object for each of three classes of users (owner,
owning group, and other). Not all access modes are relevant or interpreted identically for
all object types.

• Extended Permissions: This is a list of user IDs and/or group IDs that specifies access
given to an object for those named users and groups. These extended permissions, also
called Access Control Lists or ACLs, are optional and may only be set by the object
owner. Extended permissions, when present, are used in combination with permission bits
to determine access to an object.

• TCB Bit: Any file system object may have this attribute set to indicate its membership in
the TCB. This bit is not used nor consulted in the evaluated configuration for security
policy enforcement.

Final Evaluation Report: IBM RS/6000 Distributed System

158

6.4.2 Ordinary File Security Attributes
Ordinary files include both ordinary text and program files. In addition to the common attributes,
file objects have the following attributes:

• setuid: causes a process to change effective user ID when the program is executed.

• setgid: causes a process to change effective group ID when the program is executed.

6.4.3 Directory and Directory Entry Security Attributes
In addition to the common attributes, directory objects have the following special attributes:

• setgid: Causes objects created in the directory to inherit the directory’s group ID, rather
than the effective group ID of the creating process.

• savetext: used to restrict deletion rights. If the savetext bit is set on a directory, then files
(and subdirectories) can only be deleted by the processes with an effective UID equal to
the owning UID of the file (or subdirectory). This is in contrast to directories where the
savetext bit has not been set, where any user with the write permission to the directory can
delete a file or subdirectory. This special case is an adjunct to the access control policy,
and is not part of the access control policy itself.

Directory entries have no security attributes on their own. All access control derives from the
attributes of the directory of which they are a part. They are treated as distinct resources solely
for the purpose of Object Reuse protection.

6.4.4 Symbolic Link Security Attributes
Symbolic links have no additional security attributes.

6.4.5 Device Special File Security Attributes
Device Special Files, character and block, have no additional security attributes.

6.4.6 Named Pipe (FIFO) Security Attributes
FIFOs have no additional security attributes.

6.4.7 Unnamed Pipe Security Attributes
Unnamed pipe objects have no additional security attributes. Further, because they are created in
the "open" state, and are not namable in the file system, the permission bits of these objects have
no meaning.

Although unnamed pipes are not part of the file hierarchy, in the sense of having a pathname like
all other file system objects, they are part of the file system in the sense of being implemented

Final Evaluation Report: IBM RS/6000 Distributed System

159

similar to files because they are manipulated with the same file descriptor interfaces as other file
system objects.

6.4.8 Socket Special File (UNIX Domain) Security Attributes
UNIX domain sockets have no additional security attributes.

6.5 Inter-Process Communication Resources Security
Attributes

All System V IPC have associated with them the creator’s UID and GID as well as the current
owner’s UID and GID. Base permission bits are maintained and used in access control decisions.
Extended permission bits are not available on these types of objects.

6.5.1 System V Shared Memory Security Attributes
A shared memory segment refers to a portion of memory that may be mapped into the address
space of one or more processes. When a shared memory segment is created a unique identifier is
allocated to it that is used by other non-TCB subjects as a key (external name) to reference it.

6.5.2 System V Message Queues Security Attributes
A Message queue is like a mailbox holding typed messages. Messages may be retrieved by type or
FIFO order. It allows processes to communicate with each other by placing and retrieving
messages on a specified message queue. The message queue ID gives them a unique external
name.

6.5.3 System V Semaphores Security Attributes
A semaphore is an IPC mechanism used to relay some condition to all participating processes. For
example semaphores can be used for process synchronization, or for sharing of a resource
between different processes. Semaphores are implemented in sets consisting of one or more
semaphore values. Each semaphore has a unique identifier that can be used as an explicit external
name to refer to it by different processes.

6.6 Queuing System Related Resources Security Attributes

6.6.1 Printer Queue Entry Security Attributes
Printer Queue entries are created by users submitting print jobs with the LPR command. The
security attribute of the printer queue entries is the user ID of the submitting process.

Final Evaluation Report: IBM RS/6000 Distributed System

160

6.6.2 At-Job Queue Entry Security Attributes
At-job queue entries are created by users submitting batch jobs with the AT command. The
security attribute of the at-job queue entries is the Real User ID of the submitting process.

6.6.3 Crontab File Security Attributes
The security attribute for the crontab is the owning user ID.

6.7 Miscellaneous Resources Security Attributes

6.7.1 Processes
Processes are the active agents (subjects) of the RS/6000 Distributed System. However, they may
also be viewed as objects, operated on by other processes, and as such have attributes that govern
the ability of other processes to perform those operations: the real and effective user IDs.

In addition, processes have numerous other attributes that control their capabilities when
performing operations. See section 6.3, Subjects for a complete list.

There are two interfaces that operate on processes:

• the PS command and related commands, for displaying process status and attributes;

• the kill system call, for sending signals;

The relevant attributes of process objects with respect to these operations are the effective user
and group IDs, and the real user and group IDs.

6.7.2 Datagrams and TCP Connections
Datagrams and TCP connections have no specific security attributes and are only interesting for
the purposes of object reuse.

6.7.3 Mail Files
Each user mailbox is an ordinary file, and has the security attributes associated with ordinary files.
When a user mailbox is created, the user owns it.

Users cannot create their own mailbox. Mailboxes are created by the BELLMAIL program at the
time mail is sent to a user for which no mailbox already exists. DAC permissions (755) on the
/usr/spool/mail directory enforce this restriction.

6.7.4 Printer DRAM
The printer DRAM has no specific security attributes and is only interesting for the purpose of
object reuse.

Final Evaluation Report: IBM RS/6000 Distributed System

161

6.7.5 Frame Buffer
The frame buffer has no specific security attributes and is only interesting for the purpose of
object reuse.

Final Evaluation Report: IBM RS/6000 Distributed System

162

7. TCB POLICIES
This chapter describes how the RS/6000 Distributed System Trusted Computing Base (TCB)
controls the resources described in Chapter 6. It begins with a description of the policies, and then
provides a per policy, per resource description of how the policies are applied.

7.1 Identification and Authentication
The software involved in user identification and authentication is discussed in section 5.3.10,
Identification and Authentication. This section describes the policies applied by each mechanism
that creates user sessions. User attributes for identification and authentication are described in
section 6.2.2, User Attributes.

7.1.1 Interactive Login and Passwords
A user logs in to the RS/6000 Distributed System using the console of any host in the distributed
system. Passwords are used for user authentication. Once a user has successfully logged in to one
host in the RS/6000 Distributed System, that user can access other hosts in the distributed system.
Some services, such as accessing files on NFS-mounted file systems do not require the user to log
in again. Other services, such as using telnet to obtain a shell prompt on another host or using ftp
to transfer files between hosts in the distributed system require logging in again in order to
enforce individual accountability.

As noted in section 5.3.10, Identification and Authentication, the contents of /etc/security (and
other configurable data) are stored on one host in the distributed system, and are NFS-mounted on
all other hosts. Thus, the password information available to all hosts in the distributed system is
identical and configuration parameters changed on one host are propagated throughout the
distributed system.

7.1.1.1 Administrative Configuration Options Effecting TCB Policies

AIX provides a number of configurable options that bear directly on administration of the security
policy. These options are in the TCB database configuration file, /etc/security/user. These are per-
user attributes with defaults defined for each that are applied system wide and may be overridden
on a per-user basis, as shown in Table 7.1.

Final Evaluation Report: IBM RS/6000 Distributed System

163

Table 7.1. Administrative Configuration Options. AIX provides a number of per-user
attributes.

Option Description
account_locked Indicates if a user allowed access to the system
dictionlist Password dictionaries to be consulted when new passwords are generated.
expires Identifies the expiration date of the account.
histexpire Defines the period of time that a user cannot reuse a password.
histsize Defines the number of previous passwords that a user cannot reuse.
login Defines whether or not a user can log in using the login command.
logintimes Specifies the days and times of day when a user is permitted to login.
loginretries Defines the number of unsuccessful login attempts allowed before locking the account.
maxage Defines the maximum lifetime of a password.
maxexpired Defines the grace period beyond maxage when a user may change a password without

administrative intervention.
maxrepeats Defines the maximum number of times a character can be repeated in a new password.
minalpha Defines the minimum number of alphabetic characters that must be in a new password.

mindiff Defines the minimum number of characters in a new password that must not have been in the
previous password.

minlen Defines the minimum length of a password.
minother Defines the minimum number of non-alphabetic characters required in a new password.
rlogin Permits access to the account using either telnet or rlogin.
su Indicates whether or not a user may change identities to this user.
sugroups Lists the groups from which a user may change to this user identity.
ttys Lists the terminals that can access the account or should be denied access to the account. rsh

and rexec can be permitted or denied using this.
umask Determines default file permissions.

7.1.1.2 Password Authentication

The standard authentication mechanism in the RS/6000 Distributed System is passwords. There is
a configuration user attribute for minimum password length. Passwords may be forced to expire
periodically. If the user’s password has expired, that user is not permitted to log in until the user
or administrator has changed the password.

AIX users are permitted to change their passwords. Users choose their own passwords based on
guidance in the SFUG, which advises users to choose passwords that are not derived from
personal or other information that can be easily guessed by an attacker. AIX does not include an
automatic password generation facility. An administrator can configure password quality
parameters that must be enforced. Each of these user attribute can be set on a system-wide basis
or for an individual user. If the same user attribute is set for both the default and specific user
case, the user-specific value overrides the default value. Only the password quality user attribute
for minimum length (minlen) must be used in the evaluated configuration, and it must be set to
eight (8). There are other password quality user attribute, but they are not required to meet the
C2 level of trust requirements but are highly recommended for use as they do enhance the system
security posture. The TFM contains definitions for these other user attribute, if a system
administrator desires to enforce them.

Final Evaluation Report: IBM RS/6000 Distributed System

164

7.1.1.3 Changing Identity Policy

Users can change their identity (i.e., switch to another identity) using the SU command. When
switching identities, the login UID is not changed, so all actions are ultimately traceable in the
audit trail to the originating user. For purposes of this discussion, the original UID is called the
source identity and the UID being switched to is the target identity.

In order for a user to SU to a different user identity, all of the following must be true:

• The entry in /etc/security/user for the target identity must have the SU user attribute set to
true.

• The entry in /etc/security/user for the target identity must have the sugroups user attribute
set to allow at least one group that the source identity is a member of, and sugroups must
not deny any groups that the source identity is a member of.

• The user must present the correct password corresponding to the target identity. The
password is hashed and compared to the stored hashed password in /etc/security/passwd
for verification.

The TFM requires that the sugroups user attribute for the root user identity, and all other
administrative user accounts, be set to allow only those users that are designated as administrators
to change to that identity. This prevents non-administrators from logging in under their own
identity and then attacking administrator accounts. An administrator must login with a non-root
identity, then SU to the root identity to enforce individual accountability.

7.1.1.4 Authentication Failure Handling

Administrators can configure login parameters to define the number of allowable unsuccessful
login attempts before the system locks the account. An administrator can utilize login
configuration parameters to define limits for such things as:

• the delay between unsuccessful login attempts

• the number of unsuccessful attempts before an account is locked

• the number of seconds during which unsuccessful login attempts must occur before an
account is locked

• the number of minutes after an account is locked that it can be automatically unlocked (or
if set to 0, the account remains locked until the administrator unlocks it).

An account can be automatically disabled (and either manually or automatically re-enabled) after a
set number of incorrect password guesses. Users will also be unable to login if their account has
been retired by the administrator.

7.1.2 Batch Authentication
Batch job authentication is subject to the same authentication mechanisms as a regular login. Only
authorized users can submit and access batch jobs. When a batch job is considered for execution,
the UID is checked to ensure that it is a valid UID (i.e. has not been deleted) and, if it is valid, the
job will execute under the UID, and the associated process attributes of that UID. Batch jobs are

Final Evaluation Report: IBM RS/6000 Distributed System

165

associated with the real UID of the process submitting the request. If a user has switched
identities to another user using the su command, and submits a batch job, the batch job will run
under the identity of the target user.

As explained in section 5.3.12, Batch Processing, there are two types of files that determine which
users are authorized to submit (and modify) their own batch jobs: allow and deny.

There is only one access mode for batch jobs. The access mode allows the user complete access
to their own job. In addition, batch jobs with an effective UID of 0, or the root identity, have
complete access to all queues. Group IDs do not play a role in access controls for batch jobs.

When a user submits a batch job, the user’s UID, GID, supplementary groups, login ID, and audit
information are recorded. These values are used when the batch job is run, thus ensuring that
audit information is associated with the user whose session originated the request, while using the
permissions associated with the real UID at the time the batch job was submitted.

7.2 Privileges
There are two modes of privilege available in AIX 4.3, least privilege mode and monolithic mode.
Both modes use four privilege vectors: inherited, effective, bequeathed, and maximum. These
privilege vectors are stored as part of the process’s credential structure.

In the evaluated system, the monolithic mode is the only supported privilege mode. There is a
system configuration parameter that is set to ensure that least privilege mode is not enabled.

7.2.1 Process Privilege Sets
In monolithic privilege mode if the effective UID of the process is root, all privileges are enabled
in all privilege vectors. If the process is not root, there are no privileges enabled in any of the
privilege vectors.

7.2.1.1 fork

 If a process performs a fork operation the resulting process will have the same privileges as the
parent, i.e. if root forks a child process the child has all privileges, and if an untrusted process
forks a child process the child has no privileges.

7.2.1.2 exec

In monolithic privilege mode, the privilege vectors are set based on the effective user identity at
the time the executable image is started via exec. Processes which have an effective user identity
of root have all the bits enabled, and processes which have an effective user identity other than
root have none of the bits enabled.

Final Evaluation Report: IBM RS/6000 Distributed System

166

7.2.1.3 setuid

When a process changes identity, such as using one of the setuid system calls, all of the privilege
vectors are automatically recalculated to reflect the process’s new identity.

7.2.2 Privilege Control Lists
Privilege control lists (PCLs), which are associated with executable files, contain a set of
additional privileges to be inherited by a process and a list of user and/or group identities which
are to inherit those privileges. PCLs, when they exist, are stored in the file’s extended inode.

Since the use of PCLs cannot be restricted by the least privilege system parameter, there are no
TCB files delivered with PCLs. The evaluated configuration does not contain the commands that
allow setting or manipulating of the PCLs and the administrator is instructed in the TFM to not
set PCLs on any TCB files. The command TCBCK can also be used to detect any unauthorized
PCLs.

 The above controls completely restrict the use of PCLs in the evaluated configuration.

7.3 Discretionary Access Control
This section outlines the general DAC policy in the RS/6000 Distributed System as implemented
for resources where access is controlled by permission bits and optionally, extended permissions;
principally these are the objects in the file system. In all cases the policy is based on user identity
(and in some cases on group membership associated with the user identity). To allow for
enforcement of the DAC policy, all users must be identified and their identities authenticated.
Details of the specific DAC policy applied to each type of resource are covered in section 7.4,
Discretionary Access Control: File System Objects and section 7.5, Discretionary Access Control:
IPC Objects.

The general policy enforced is that subjects (i.e., processes) are allowed only the accesses
specified by the class-specific policies. Further, the ability to propagate access permissions is
limited to those subjects who have that permission, as determined by the class-specific policies.
Finally, a subject with an effective UID of 0 is exempt from all restrictions and can perform any
action desired.

DAC provides the mechanism that allows users to specify and control access to objects that they
own. DAC attributes are assigned to objects at creation time and remain in effect until the object
is destroyed or the object attributes are changed. DAC attributes exist for, and are particular to,
each type of object on the RS/6000 Distributed System. DAC is implemented with permission bits
and, when specified, extended permissions.

A subject whose effective UID matches the file owner ID can change the file attributes, the base
permissions, and the extended permissions. Changes to the file group are restricted to the owner.
The new file group identifier must either be the current effective group identifier or one of the
group identifiers in the concurrent group set. In addition, a subject whose effective UID is 0 can

Final Evaluation Report: IBM RS/6000 Distributed System

167

make any desired changes to the file attributes, the base permissions, the extended permissions,
and owning user of the file.

Permission bits are the standard UNIX DAC mechanism and are used on all RS/6000 Distributed
System file system named objects. Individual bits are used to indicate permission for read, write,
and execute access for the object’s owner, the object’s group, and all other users (i.e. world). The
extended permission mechanism is supported only for file system objects and provides a finer level
of granularity than do permission bits.

7.3.1 Permission Bits
The RS/6000 Distributed System uses standard UNIX permission bits to provide one form of
DAC for file system named objects. There are three sets of three bits that define access for three
categories of users: the owning user, users in the owning group, and other users. The three bits in
each set indicate the access permissions granted to each user category: one bit for read (r), one
for write (w) and one for execute (x). Each subject’s access to an object is defined by some
combination of these bits:

• rwx symbolizing read/write/execute

• r-x symbolizing read/execute

• r-- symbolizing read

• --- symbolizing null

 When a process attempts to reference an object protected only by permission bits, the access is
determined as follows:

• Effective UID = Object’s owning UID and the owning user permission bits allow the type
of access requested. Access is granted with no further checks.

• Effective GID, or any supplementary groups of the process = Object’s owning GID, and
the owning group permission bits allow the type of access requested. Access is granted
with no further checks.

• If the process is neither the owner nor a member of an appropriate group and the
permission bits for world allow the type of access requested, then the subject is permitted
access.

• If none of the conditions above are satisfied, and the process is not the root identity, then
the access attempt is denied.

Final Evaluation Report: IBM RS/6000 Distributed System

168

7.3.2 Extended Permissions
The extended permissions consist of an essentially unlimited number of additional permissions and
restrictions for specific users and groups. Each entry in the extended permissions list consists of
three parts: an entry type, a set of permissions, and an identity list.

• The entry type is the value permit, deny, or specify (indicating that the entry indicates a set
of permissions to be allowed as supplemental to the listed identity(ies), denied to the listed
identity(ies), or that the permissions permitted and the complementary set denied to the
listed identity(ies) respectively).

• The permission set is zero or more of the permissions read, write, and execute.

• The identity list is one or more values specifying users and/or groups. The entry is applied
if the process’ effective UID, effective GID, and supplemental groups match all values in
the list. The term "match" means that for each value in the identity list, if the value is for a
UID, that the specified UID is the same as the process' effective UID, and if the value is
for a GID, that the specified GID is either the same as the process' effective GID or the
specified GID is included in the process’ list of supplemental GIDs.

There is no explicit ordering of entries within the extended permissions. To determine access
rights, the kernel takes into account all entries that match the UID or GID of the process. For
each entry, the permit and specify bits are added to a permissions list and the deny and bitwise
negation of the specify are added to a restrictions list. The restrictions are bitwise removed from
the permissions and the resulting list is used in the access determination.

The maximum size for the extended permissions is one memory page (4096 bytes). The entries are
variable length. Each entry takes a minimum of 12 bytes (two for the length of the entry, two for
the permission type and permissions allowed, two for the number of identity entries, two for the
type of identity entry, and four for each UID/GID). As a result, there can be over 300 entries in an
extended permissions list, which is in practice unlimited.

Collectively, the file attributes, base permissions, extended permissions, and extended attributes
are known as the file Access Control List (ACL). ACLs have a textual representation (used with
commands such as ACLGET) and binary representations (for storage in the file system). Table 7-2 is
a textual representation of an ACL.

When a process attempts to reference an object protected by an ACL, it does so through a system
call (e.g., open, exec). If the object has been assigned an ACL access is determined as according
to the algorithm below:

Final Evaluation Report: IBM RS/6000 Distributed System

169

Table 7-2. Sample File System ACL.

ACL Definition Explanation
attributes: SUID Specifies that the setuid bit is turned on and the setgid and savetext bits are

turned off.
base permissions: This line is optional, and indicates that the following lines are defining the

base permissions.
 owner(frank): rw- The owning user of the file, who is "frank", has the read and write

permissions to the file.
 group(system): r-x The owning group of the file, who is "system", has the read and execute

permissions to the file.
 others: --- Those individuals who are neither the file owner nor file group do not get

any permissions to from the base permissions (but may obtain permissions
from the extended permissions).

extended permissions: This line is optional, and indicates that the following lines are defining the
extended permissions.

 enabled Specifies that extended permissions are enabled (if this line specified
disabled, then the rest of the ACL would be ignored.)

 permit rw- u:sally Grants user (u:) "sally" the read and write permissions to the file.
 deny r-- u:nicole, g:system Denies user (u:) "nicole" the read permission to the file when she is a

member of the "system" group.
 specify r-- u:gary, g:projx, g:projy Grants user "gary" the read permission, and denies both write and execute

permission, so long as he is a member of both the "projx" and "projy" groups.
If "gary" is not a member of both groups, this extended permission entry is
ignored.

 permit rw- g:account, g:finance Grants the read and write permissions to any user who is a member of both
the "account" and "finance" groups.

7.3.3 Pathname Traversal and Access Decision Flowchart
The flowchart in figure 7.1 illustrates the process that is used to resolve an AIX pathname and
determine if a subject has access to a named file system object. The input to this algorithm is the
subject (and in particular the credentials of the subject), the object (represented by a pathname
string) and the access mode.

This algorithm makes use of several terms for describing the pathname resolution process. The
access directory is the current point in the pathname resolution process. The current object is the
result of searching the access directory and is either the final requested object or the next object to
be used as the access directory.

Final Evaluation Report: IBM RS/6000 Distributed System

170

Figure 7.1. Pathname Traversal and Access Decision Flowchart. A subject must have search
permission for every element of the pathname and the requested access for the object.

extended
permissions?

Y

N

owner or
group

?

other=
requested access

or UID=0?N Y

NY
owner

?

Y

•add owner permissions
to permitted rights

•add owner not(permissions)
to restricted rights

•match=true

group=
requested access

or UID=0? N
FAIL

Y
owner=

requested access
or UID=0? N

FAIL

Y

N(group)
owner

?

N
Y

•add group permissions
to permitted rights

•match=true
group

?

N(specify)

Y

another
ACL entry?

Y

user or
group

? Y

N

match=true add permissions
to permitted rights

permit
? Y

add permissions
to restricted rights

deny
? Y

add permissions to permitted rights
add not(permissions) to restricted rights

match
? N

add other permissions
to permitted rights

subtract restricted rights
from permitted rights

N
N

N

Y

requested access
or UID=0? Y

N

FAIL

PASS

PASS

get next path element

finished
parsing?

Y

extended
permissions

?N

Y

N

owner or
group

?

other
execute or

UID=0?
N Y

NY
owner

?

Y

•add owner permissions
to permitted rights

•add owner
not(permissions)
to restricted rights

•match=true

group
execute or
UID=0? N

FAIL

Y
owner

execute or
UID=0? N

FAIL

Y

Nowner
?

N
Y

•add group permissions
to permitted rights

•match=true
group

?

N(specify)

Y

another
ACL entry?

Y
user or
group

? Y

N

match=true add permissions
to permitted rights

permit
? Y

add permissions
to restricted rights

deny
? Y

•add permissions to
permitted rights

•add not(permissions)
to restricted rights

match
? N

add other permissions
to permitted rights

subtract restricted rights
from permitted rights

N
N

N

Y

execute or
UID=0?

Y

N
FAIL

Start

Final Evaluation Report: IBM RS/6000 Distributed System

171

7.4 Discretionary Access Control: File System Objects
The Discretionary Access Control (DAC) policy is described above. This section describes the
details of DAC policies as they apply to file system objects.

7.4.1 Common File System Access Control
This section describes the common DAC policy applied to file system objects, including policies
for object contents and attributes.

7.4.1.1 DAC Contents Policy

The permission-bit and ACL DAC policy determines the effective access that a process may have
to the contents of a file system object: some combination of read(r), write (w), and execute (x). In
general, read access permits the object’s contents to be read by a process, and write permits them
to be written; execute is interpreted differently for different object types. Some object types
(unnamed pipes, symbolic links) do not use the permission bits at all.

7.4.1.2 DAC Attributes Policy

In general, a process must be the object’s owner, or have privilege, to change the objects
attributes, and there are no DAC restrictions on viewing the attributes, so any process may view
them. However, the following are exceptions to the rule:

• The permission bits and ACL (permission bits, extended permissions and attributes) of an
object may be changed by an owner or by the root identity.

• The owning group ID of an object may be changed by an owner, but only to a group of
which the process is currently a member, unless it is the root identity.

• The owning user ID of an object may only be changed by the root identity.

7.4.1.3 DAC Defaults

The default access control on newly created FSOs is determined by the permissions associated
with the directory where the FSO was created, the effective user ID, group ID, and umask value
of the process that created the FSO, and the specific permissions requested by the program
creating the FSO.

• The owning user of a newly created FSO will be the effective UID of the creating process.

• If the setgid bit is set on the containing directory, then the owning group of a newly
created FSO will be the owning group of the containing directory. If the setgid bit is not
set on the containing directory, then the owning group of the newly created FSO will be
the effective GID of the creating process.

Final Evaluation Report: IBM RS/6000 Distributed System

172

• The initial access permissions on the FSO are those specified by the creating process bit-
wise ANDed with the one’s complement of the umask value. For example, if a program
specified initial permissions of 0664 (read/write for owner, read/write for group, and read
for world) but the umask value were set to 0027 (prevent write for group or world,
prevent all permissions for world), then the initial file permissions would be set to 0644
(or 0644 bit-and 0750).

• There are initially no extended permissions associated with an FSO. Extended permissions
can be set by applications or by users using AIX commands.

Base and extended access permissions can be changed by any process with an effective UID equal
to the owning UID of the FSO, providing that the effective UID has at least the execute
permission to the containing directory. Note that since a file may have multiple hard links, the
process can use any of the containing directories (i.e., if there is any directory containing a link to
the file, then that path could be used as a means to get to the file and change its permissions).

7.4.1.4 DAC Revocation on File System Objects

With the exception of NFS objects, file system objects (FSOs) access checks are performed when
the FSO is initially opened, and are not checked on each subsequent access. Changes to access
controls (i.e., revocation) are effective with the next attempt to open the FSO.

For NFS objects, access is checked for each operation. A change to the access rights for an NFS
FSO take effect as of the next NFS request.

In cases where the administrator determines that immediate revocation of access to an FSO is
required, the administrator can reboot the computer, resulting in a close on the FSO and forcing
an open of the FSO on system reboot. This method is described in the TFM.

7.4.2 DAC: Ordinary File
In addition to read and write, ordinary files support the execute permission. Execute access is
required to execute the file as a program or script. When an executable file has the set-user-ID or
set-group-ID flags set, or is executed by the root identity, executing it as a program changes the
process’s security attributes.

7.4.3 DAC: Directory
The execute permission bit for directories governs the ability to name the directory as part of a
pathname. A process must have execute access in order to traverse the directory during pathname
resolution.

Directories may not be written directly, but only by creating, renaming, and removing (unlinking)
objects within them. These operations are considered writes for the purpose of the DAC policy.

Final Evaluation Report: IBM RS/6000 Distributed System

173

7.4.4 DAC: Device Special File
The access control scheme described for FSOs is used for protection of character and block
device special files. Most device special files are configured to allow read and write access by the
root user, and read access by privileged groups. With the exception of terminal and pseudo-
terminal devices and a few special cases (e.g., /dev/null and /dev/tty), devices are not accessible to
non-TCB software.

7.4.5 DAC: UNIX Domain Socket Special File
UNIX domain socket files are treated identically to any other file in the AIX file system from the
perspective of access control, with the exception that using the bind or connect system calls
requires that the calling process must have both read and write access to the socket file.

Because UNIX domain sockets exist in the file system name space, the socket files can have both
base mode bits and extended ACL entries. Both are considered in making the DAC decision.

UNIX domain sockets consist of a socket special file (managed by the Logical File System) and a
corresponding socket structure (managed by IPC). The LFS controls access to the socket based
upon the caller’s rights to the socket special file.

7.4.6 DAC: Named Pipes
Named pipes are treated identically to any other file in the AIX file system from the perspective of
access control.

7.4.7 DAC: Special Cases for NFS File Systems
Only files, directories, and symbolic links have accessible contents in the NFS file system, and only
those object types may be created. However, those attributes supported by NFS can be
manipulated regardless of object type.

DAC checks by the NFS server for file contents permit a subject with the same effective owning
user ID as the file to have access to the contents regardless of the DAC attributes. This is used to
support the standard UNIX semantics for access to open files, because such access is not re-
validated when a file’s DAC attributes change. This special case relies on the property that,
ordinarily, only a file’s owner changes its DAC while the file is open, and it is thus sufficient to
handle the owner specially.

DAC changes do have immediate effect for users other than the owner, unlike local files: if an
NFS-accessed file’s DAC is changed to deny access, any subsequent read or write operation to an
open file will fail if the operation would no longer be permitted by the new DAC attributes.
However, this can never grant additional access, because the client would have checked the
access when the file was opened and not permitted more access than the DAC attributes allowed
at open time.

Final Evaluation Report: IBM RS/6000 Distributed System

174

In addition these access checks are always based on the process’s current identity, rather than the
identity at the time the file was opened as is done in some UNIX systems. Thus a set UID
program that opens an NFS-mounted file and subsequently changes its user ID back to the saved
user ID may lose access to the file.

7.5 Discretionary Access Control: IPC Objects

7.5.1 DAC: Shared Memory
For shared memory segment objects (henceforth SMSs), access checks are performed when the
SMS is initially attached, and are not checked on each subsequent access. Changes to access
controls (i.e., revocation) are effective with the next attempt to attach to the SMS.

In cases where the administrator determines that immediate revocation of access to a SMS is
required, the administrator can reboot the computer, thus destroying the SMS and all access to it.
This method is the described in the TFM. Since a SMS exists only within a single host in the
distributed system, rebooting the particular host where the SMS is present is sufficient to revoke
all access to that SMS.

If a process requests deletion of a SMS, it is not deleted until the last process that is attached to
the SMS detaches itself (or equivalently, the last process attached to the SMS terminates).
However, once a SMS has been marked as deleted, additional processes cannot attach to the SMS
and it cannot be undeleted.

The default access control on newly created SMSs is determined by the effective user ID and
group ID of the process that created the SMS and the specific permissions requested by the
process creating the SMS.

• The owning user and creating user of a newly created SMS will be the effective UID of
the creating process.

• The owning group and creating group of a newly created SMS will be the effective GID
of the creating process.

• The creating process must specify the initial access permissions on the SMS, or they are
set to null and the object is inaccessible until the owner sets them.

• SMSs do not have extended permissions.

Access permissions can be changed by any process with an effective UID equal to the owning
UID or creating UID of the SMS. Access permissions can also be changed by any process with an
effective UID of 0, also known as running with the root identity.

7.5.2 DAC: Message Queues
For message queues, access checks are performed for each access request (e.g., to send or receive
a message in the queue). Changes to access controls (i.e., revocation) are effective upon the next
request for access. That is, the change affects all future send and receive operations, except if a
process has already made a request for the message queue and is waiting for its availability (e.g., a

Final Evaluation Report: IBM RS/6000 Distributed System

175

process is waiting to receive a message), in which case the access change is not effective for that
process until the next request.

If a process requests deletion of a message queue, it is not deleted until the last process that is
waiting for the message queue receives its message (or equivalently, the last process waiting for a
message in the queue terminates). However, once a message queue has been marked as deleted,
additional processes cannot perform messaging operations and it cannot be undeleted.

The default access control on newly created message queues is determined by the effective user
ID and group ID of the process that created the message queue and the specific permissions
requested by the process creating the message queue.

• The owning user and creating user of a newly created message queue will be the effective
UID of the creating process.

• The owning group and creating group of a newly created message queue will be the
effective GID of the creating process.

• The initial access permissions on the message queue must be specified by the creating
process, or they are set to null and the object is inaccessible until the owner sets them.

• Message queues do not have extended permissions.

Access permissions can be changed by any process with an effective UID equal to the owning
UID or creating UID of the message queue. Access permissions can also be changed by any
process with an effective UID of 0.

7.5.3 DAC: Semaphores
For semaphores, access checks are performed for each access request (e.g., to lock or unlock the
semaphore). Changes to access controls (i.e., revocation) are effective upon the next request for
access. That is, the change affects all future semaphore operations, except if a process has already
made a request for the semaphore and is waiting for its availability, in which case the access
change is not effective for that process until the next request.

In cases where the administrator determines that immediate revocation of access to a semaphore
is required, the administrator can reboot the computer, thus destroying the semaphore and any
processes waiting for it. This method is the described in the TFM. Since a semaphore exists only
within a single host in the distributed system, rebooting the particular host where the semaphores
is present is sufficient to revoke all access to that semaphore.

If a process requests deletion of a semaphore, it is not deleted until the last process that is waiting
for the semaphore obtains its lock (or equivalently, the last process waiting for the semaphore
terminates). However, once a semaphore has been marked as deleted, additional processes cannot
perform semaphore operations and it cannot be undeleted.

Final Evaluation Report: IBM RS/6000 Distributed System

176

The default access control on newly created semaphores is determined by the effective user ID
and group ID of the process that created the semaphore and the specific permissions requested by
the process creating the semaphore.

• The owning user and creating user of a newly created semaphore will be the effective UID
of the creating process.

• The owning group and creating group of a newly created semaphore will be the effective
GID of the creating process.

• The initial access permissions on the semaphore must be specified by the creating process,
or they are set to null and the object is inaccessible until the owner sets them.

• Semaphores do not have extended permissions.

Access permissions can be changed by any process with an effective UID equal to the owning
UID or creating UID of the semaphore. Access permissions can also be changed by any process
with an effective UID of 0.

7.6 Object Reuse
Object Reuse is the mechanism that protects against scavenging, or being able to read information
that is left over from a previous subject’s actions. Three general techniques are applied to meet
this requirement in the RS/6000 Distributed System: explicit initialization of resources on initial
allocation or creation, explicit clearing of resources on release or deallocation, and management
of storage for resources that grow dynamically.

Explicit initialization is appropriate for most TCB-managed abstractions, where the resource is
implemented by some TCB internal data structure whose contents are not visible outside the
TCB: queues, datagrams, pipes, and devices. These resources are completely initialized when
created, and have no information contents remaining.

Explicit clearing is used in the RS/6000 Distributed System only for directory entries, because
they are accessible in two ways: through TCB interfaces both for managing directories and for
reading files. Because this exposes the internal structure of the resource, it must be explicitly
cleared on release to prevent the internal state from remaining visible.

Storage management is used in conjunction with explicit initialization for object reuse on files, and
processes. This technique keeps track of how storage is used, and whether it can safely be made
available to a subject.

7.6.1 Object Reuse: File System Objects
All file system objects (FSOs) available to general users are accessed by a common mechanism for
allocating disk storage and a common mechanism for paging data to and from disk. This includes
the Journaled File System (JFS) and Network File System (which exists physically as a JFS
volume on a server host). It includes both normal and large JFS file systems.

Object reuse is irrelevant for the CD-ROM File System (CDRFS) because it is a read-only file
system and so it is not possible for a user to read residual data left by a previous user. File systems

Final Evaluation Report: IBM RS/6000 Distributed System

177

on other media (tapes, diskettes.) are irrelevant because of TFM warnings not to mount file
systems on these devices.

For this analysis, the term FSO refers not only to named file system objects (files, directories,
device special files, named pipes, and UNIX domain sockets) but also to unnamed abstractions
that use file system storage (symbolic links and unnamed pipes). All of these, except unnamed
pipes, have a directory entry that contains the pathname and an inode that controls access rights
and points to the disk blocks used by the FSO.

In general, file system objects are created with no contents, directories and symbolic links are
exceptions, and their contents are fully specified at creation time.

7.6.1.1 Object Reuse: Files

Storage for files is allocated automatically in pages as a file grows. These pages are cleared before
they become accessible, within the file. However, when a file is deleted the space holding the data
from the file, both in memory and on disk, is not cleared. This data will persist until the space is
assigned to another file, when it will be cleared. These internal fragments of deleted files are
protected by the kernel to prevent accessing of deleted data.

 If data is read before it is written, it will read only as zeroes. Reads terminate when the end-of-
file (EOF) is detected. It is possible to seek past the EOF, but any reads will return zeros. File
writes may cause the file to grow, thus overwriting any residual data and moving the EOF. If the
file is seeked past the EOF and then written, this leaves a hole in the file that will subsequently be
read as zeroes.

7.6.1.2 Object Reuse: Directories and Directory Entries

In part, object reuse for directories is handled as for ordinary files: pages allocated are always
cleared before being incorporated into the directory. When a directory is first created, it is
explicitly initialized to have the entries "." and "..", but the remainder of the directory’s storage is
cleared.

Individual directory entries are manipulated as distinct resources, such as when referencing file
system objects, and as part of the directory, such as when reading the entire directory itself. When
a directory entry is removed or renamed the space occupied by that directory entry is either
combined with the previous entry as free space or else the i-node number of the entry is set to
zero when the entry occurs on a 512 byte boundary.

When a directory entry does not occur on a 512-byte boundary, the size of the preceding
directory entry in incremented by the size of the directory entry which has been removed. The
space in a directory entry in excess of that which is needed to store the necessary information may
be allocated when a directory entry is to be created. The fields of the directory entry remain
unchanged.

Final Evaluation Report: IBM RS/6000 Distributed System

178

When a directory entry occurs on a 512-byte boundary, the i-node number is set to zero to
indicate that this entry is now available for re-use. All other fields of the directory entry remain
unchanged.

The directory entry is no longer visible to interfaces which perform file name operations and may
only be seen when the entire directory is examined and the process has read access to the
directory.

7.6.1.3 Object Reuse: Symbolic Links

Symbolic links have their contents (the link pathname) fully specified at creation time, and the
readlink operation returns only the string specified at creation time, not the entire contents of the
block it occupies.

7.6.1.4 Object Reuse: Device Special Files

All device special files are initialized to a known state on first open and never grow.

7.6.1.5 Object Reuse: Named Pipes

FIFOs are created empty. Buffers are allocated to contain data written to a pipe, but the read and
write pointers are managed to ensure that only data that was written to the pipe can ever be read
from it.

7.6.1.6 Object Reuse: Unnamed Pipes

Unnamed pipes are created empty. Buffers are allocated to contain data written to a pipe, but the
read and write pointers are managed to ensure that only data that was written to the pipe can ever
be read from it.

7.6.1.7 Object Reuse: Socket Special File (UNIX Domain)

UNIX domain sockets have no contents; they are fully initialized at creation time.

7.6.2 Object Reuse: IPC Objects
System V shared memory, message queues, and semaphores are initialized to all zeroes at
creation. These objects are of a finite size (shared memory segment is from one byte to 256
MBytes, semaphore is one bit), and so there is no way to grow the object beyond its initial size.
No processing is performed when the objects are accessed or when the objects are released back
to the pool.

Final Evaluation Report: IBM RS/6000 Distributed System

179

7.6.3 Object Reuse: Queuing System Objects

7.6.3.1 Object Reuse: Printer Job Description Files

A print queue consists of a sequence of job description files. When the queue daemon starts up, it
reads the job description files to establish its in-memory representation of the queue. This queue is
used to dispatch jobs, to respond to user status requests, and to handle requests to delete queue
entries. Object reuse for the job description files are handled as for files as described previously.

7.6.3.2 Object Reuse: Batch Queue Entries

cron and at jobs are defined in batch files, which are subject to the object reuse protections
specified for files as described previously.

7.6.4 Object Reuse: Miscellaneous Objects

7.6.4.1 Object Reuse: Process

A new process’s context is completely initialized from the process’s parent when the fork system
call is issued. All program visible aspects of the process context are fully initialized. All kernel
data structures associated with the new process are copied from the parent process, then modified
to describe the new process, and are fully initialized.

The AIX kernel zeroes each memory page before allocating it to a process. This pertains to
memory in the program’s data segment and memory in shared memory segments. When a process
requests more memory, the memory is explicitly cleared before the process can gain access to it.

When the kernel performs a context switch from one thread to another, it saves the previous
thread’s General Purpose Registers (GPRs) and restores the new thread’s GPRs, completely
overwriting any residual data left in the previous thread’s registers. Floating Point Registers
(FPRs) are saved only if a process has used them. The act of accessing an FPR causes the kernel
to subsequently save and restore all the FPRs for the process, thus overwriting any residual data
in those registers.

Processes are created with all attributes taken from the parent. The process inherits its memory
(text and data segments), registers, and file descriptors from its parent. When a process execs a
new program, the text segment is replaced entirely. The AIX kernel zeroes each memory pages
before allocating it to a process. This pertains to memory in the program’s data segment and
memory in shared memory segments (shmat, mmap). Each thread is associated with a process and
has access to all of the process resources. The allocation and deallocation of a thread affects only
its process. When the kernel performs a context switch from one thread to another, it saves the
previous thread’s General Purpose Registers (GPRs) and restores the new thread’s GPRs, thus,
completely overwriting any residual data left in the previous thread’s registers.

Final Evaluation Report: IBM RS/6000 Distributed System

180

Floating point registers (FPRs) are saved only if they have been used by a process. However, the
act of accessing a FPR causes the kernel to subsequently save and restore all the FPRs for the
process, thus overwriting any residual data in these registers.

7.6.4.2 Object Reuse: Datagrams

The buffers that are allocated to hold datagrams control information are zeroed out on allocation.
The buffers that are allocated to hold network data are not zeroed out because the user data or
inbound packet from the network entirely overwrites the data in the buffer.

7.6.4.3 Object Reuse: Mail Files

Mail spool files are files managed by the SENDMAIL program. Residual data for these files is
handled through the underlying mechanisms for file system objects.

7.6.4.4 Object Reuse: Printer DRAM

Every print job contains a reset command at the beginning and end of the print job. The reset
command removes all user data and temporary macros from the printer DRAM, initializing the
printer DRAM to a known empty state. Permanent macros remain. In addition to the reset
command, an escape sequence that removes all macros, temporary and permanent is also sent
prior to the print job executing.

7.6.4.5 X Windows Resources and Frame Buffer

The X Windows system permits user software to directly access the frame buffer and registers on
the video adapter. The Rendering Context Manager (RCM) kernel software ensures that the user
that started the X Server has exclusive access to these hardware resources. Because users have
serially exclusive access to the video hardware, the X Server and video adapter can be analyzed as
an aggregate storage object that must be relinquished by the current user before a subsequent user
can access the object.

When a user terminates an X-windows session the file descriptor associated with the graphics
devices is discarded and control of the graphics adapter is returned to the LFT. Upon this return,
the LFT reinitializes the video adapter hardware to a clear state.

7.7 Audit

7.7.1 Summary of Audit Events
A user account is audited based on the classes that have been assigned to it. A description of audit
classes and the process of assigning them to a user may be found in section 5.3.15.2, Audit
Control.

Final Evaluation Report: IBM RS/6000 Distributed System

181

Audit classes are administrator configurable aggregations of audit events. The system-defined
classes are shown in table 7-3 below. An administrator may add or delete classes or change the
system-defined classes as they desire, with the exception of the "ALL" class, which has an implicit
definition.

A complete list of auditable events is located in Appendix G.

Table 7-3. Audit Classes. Audit classes split the auditable events into smaller groups.

Class Description
general User id changes, password changes, creation or deletion of directories, changing directories or

changing the root directory
objects Modification to any of a group of system configuration files
SRC Starting and stopping of daemons and subsystems
kernel Process operations including create, delete and execute
files File operations including open, read, write, close, rename, change permissions, change owner

and change mode
svipc Message queues, semaphore and shared memory events
mail Modification to the SENDMAIL configuration files
cron AT and CRON job operations
tcpip Changes to TCP/IP configuration, connections, data in and data out
lvm Logical volume manager operations, including changes to logical and physical volumes
ALL All defined audit events

7.7.2 Audit: File System Objects
There are two methods of auditing file system objects. The first method occurs when a user
attempts to access a file. The /etc/security/audit/objects file contains a list of the objects that are
audited on the system, based on the object’s access rights. The second method occurs when a
user’s process attempts to perform an operation on a file, such as creating or opening a file.

A list of the file system object events that are provided by the RS/6000 Distributed System is
located in Appendix G. These events are differentiated from normal file system events by the
word ‘FILE’ at the beginning of the event name.

7.7.3 Audit: Device and Media Resources

7.7.3.1 Audit: Tape Resources

Backup and restore operations are audited when an export or import operation happens for the
system.

A list of the backup and restore events provided by the RS/6000 Distributed System is located in
Appendix G. These events are located at the bottom of the Logical Volume Manager table.

Final Evaluation Report: IBM RS/6000 Distributed System

182

7.7.3.2 Audit: Printer Resources

Printer requests that are queued using the ENQ command are auditable, as well as an action
performed by QDAEMON in the printing process.

A list of the printing events provided by the RS/6000 Distributed System is located in Appendix
G. These events are located in the command table.

7.7.3.3 Audit: File Systems

The file system events available for auditing are: mount and unmount of a file system, extend the
size of a file system, change directory, make directory, remove directory and change root.

A list of the file system events provided by the RS/6000 Distributed System is located in
Appendix G. These events are differentiated from the file system object events by the letters ‘FS’
at the beginning of the event name.

7.7.4 Audit: Deferred Execution Resources
Deferred execution resources include the AT and CRON facilities. Two audit events are provided for
the AT method of delayed execution: add a job and remove a job. Four audit events are provided
for the CRON method of delayed execution: add a job, remove a job, start of job and finish of job.
Jobs added through the at facility are executed by the CRON facility and will be audited using the
events for the CRON facility's start of job and finish of job

A list of deferred execution resource events provided by the RS/6000 Distributed System is
located in Appendix G. These events are located in the commands table.

7.7.5 Audit: Network Resources
A collection of events is available to audit TCP/IP related actions on the system. These events
include the ability to audit the establishment and/or closure of a TCP/IP connection, and the
transfer of data using TCP/IP applications like ftp.

A list of TCP/IP audit events provided by the RS/6000 Distributed System is located in Appendix
G.

Final Evaluation Report: IBM RS/6000 Distributed System

183

8. ASSURANCES

8.1 System Architecture
The RS/6000 Distributed System implements a two-state architecture, where kernel mode
software runs with hardware privilege (Supervisor State) and user mode software runs without
hardware privilege (Problem State). In kernel mode, processes exist only in the kernel protection
domain and run with hardware privilege. In user mode, a process executes application code while
the machine is in a non-privileged state. The kernel data and global data structures are protected
through the employment of the hardware protection mechanisms as described in Chapter 4 (TCB
Hardware).

8.2 System Integrity Tests
The TCSEC requires the capability for periodically validating the correct operation of the TCB
hardware and firmware. For the RS/6000 Distributed System, this is addressed on each individual
computer by Power On Self Test (POST) firmware in non-volatile memory and by diagnostic
software for the various RS/6000 Distributed System devices.

8.2.1 Power On Self Test (POST)
Each of the three models (43P, F50, and S70) includes Power On Self-Test (POST) firmware in
non-volatile memory. The code is model dependent because the hardware to be tested is different
for each computer. The POST runs when computers are powered-on or reset and tests the
following capabilities:

• registers read and write

• setable bits are set and reset (stuck fault testing)

• level 2 cache read and write (pattern testing)

• memory read and write (pattern testing)

• device controllers read and write(e.g., keyboard, serial port)

 The 43P does not have a separate service processor. However, F50 and the S70 have a separate
service processor. The POST test for the S70 performs the following:

• hardware wire tests (e.g., solder joints)

• Built-in Self Test

• service processor test

8.2.2 Diagnostic Software
AIX provides diagnostics for the resources of the evaluated hardware. Diagnostics are provided
for the PCI bus, SCSI controller, tape drive, hard drive, CD ROM, graphics adapter, network
adapters (Ethernet and token ring), ISA Bus, keyboard, mouse, floppy, and parallel port. These

Final Evaluation Report: IBM RS/6000 Distributed System

184

diagnostics are included as part of the devices LPP. The diagnostics can only run in service mode
(prior to multi-user mode). Although different diagnostics exist for each of these resources, they
all test the following capabilities for all levels supported by the hardware:

• interrupts

• DMA (read and write)

• configuration register read and write

• I/O register read and write

• read/write capability

• input/output capability

• write protect capability

• adapter initialization

• internal loopback (transmit and receive)

• external loopback (transmit and receive)

The administrator is notified if any error is detected while running the diagnostics. In addition, the
administrator may capture and review the results of these tests in error logs.

8.3 Design Documentation
IBM produced mid-level design documentation according to the PAT Guidance Working Group
Form and Content of Vendor Design Documentation. The Architecture Summary Document
(ASD) and the Interface Summary Document (ISD) provided an up-to-date, accurate mid-level
description of the system architecture and it’s interfaces. Information on lower-level design and
implementation was provided through additional IBM documentation, publicly available
documentation, interviews with developers, internal training, and code-inspections. A complete
list of all the publicly available documentation referenced in the course of this evaluation can be
found in Appendix E: Bibliography and References.

8.4 User Documentation
IBM produced new user and administration documentation to present the policies, features, and
secure uses of the RS/6000 Distributed System. These new documents include the Security
Features Users Guide (SFUG) and the Trusted Facilities Manual (TFM).

The SFUG and the TFM are included with the base AIX library, which is installed and available in
the evaluated configuration. The AIX library is entirely composed of hypertext mark-up language
(HTML) books, as are the SFUG and TFM. This allows the SFUG and the TFM to directly
reference the base library information as required. A search engine is also provided as a significant
usability enhancement to allow administrators to access documents easily.

Final Evaluation Report: IBM RS/6000 Distributed System

185

8.4.1 Security Features Users Guide
The SFUG consists of 4 chapters. Chapter 1 provides users with an overview of the RS/6000
Distributed System configuration including the hardware and software that comprise the target of
evaluation. Chapter 2 describes security evaluations and the impact of evaluations on the
assurance users may place in the system to operate according to the stated policy. Chapter 3
describes the security policies enforced by the system (i.e., I&A, DAC, Object Reuse, and Audit)
along with a description of the system assurances (i.e., system architecture, system integrity, and
system testing). Chapter 4 details how to use the system securely through the use of functions
such as logging in and out of the system, changing user identities and passwords, accessing files
and devices, handling files and directories, accessing print and network services, and using
electronic mail.

This SFUG is written in hypertext mark-up language (HTML) and is viewable from the browser
included in the evaluated configuration. The document contains hyperlinks to additional user
information including detailed instructions and examples. All these files are shipped with the
system and are accessible by any user of the system.

8.4.2 Trusted Facility Manual
The TFM consists of eight sections. The first three sections of the TFM introduce the document,
describe security evaluations and the impact of evaluations on the assurance administrators may
place in the system, describe the security policies enforced by the and system assurances.

Sections 4 through 7 consist of a series of standard AIX documentation that has been tailored for
the evaluated configuration.

� AIX 4.3 Installation Guide; (TFM section 4)
� AIX 4.3 System Management Guide: Operating System and Devices; (TFM section 5)
� AIX 4.3 System Management Guide: Communications and Networks; (TFM section 6)
� AIX 4.3 Guide to Printers and Printing; (TFM section 7)

The tailored versions of these standard documents contain warnings to administrators of what not
to do in order to establish and maintain a C2 level of trust system. The TFM also contains the
event-specific record format for each audit event.

The TFM is written in hypertext mark-up language (HTML) and is viewable from the browser
included in the evaluated configuration. The document contains links to additional user
information in the form of detailed instructions and examples through the use of hyperlinks to
other RS/6000 Distributed System user documents. All of these administrator documents are
shipped with the system and accessible to any user of the system.

Final Evaluation Report: IBM RS/6000 Distributed System

186

8.5 Security Testing

8.5.1 Test Documentation
The vendor test documentation is arranged hierarchically and begins with the RS/6000 Distributed
System C2 Evaluation Test Matrix Document (TMD). The Test Matrix Document (TMD) was
developed to provide an index into IBM’s test documentation and follows the PAT Guidance
Working Group Form and Content of Vendor Test Documentation in form and content. The first
part of this document describes the vendors test strategy, scope, environment, entry and exit
criteria, and lists the C2 level of trust requirements by their individual elements. The second part
of this document provides a cross-reference between the C2 level of trust requirements and the
TCB interfaces together with their associated test assertions and test strategies and cases.

Beginning with the high-level matrices, C2 level of trust requirements are associated with each
TCB interface class (e.g., system calls). In the mid-level matrices, TCB interface classes are
broken down into their constituent components and the C2 level of trust requirements are broken
down into their individual elements. For example, the TCB interface “system call” is further
refined to the system calls (e.g., chmod(), creat(), getpriv()). While the C2 level of trust
Requirement “Discretionary Access Control” is further refined to the DAC requirement elements
(e.g., DAC-3 The discretionary access control mechanism shall, either by explicit user action or by
default, provide that objects are protected from unauthorized access.) For each pairing of TCB
interface elements and C2 requirement elements in the mid-level matrices there is a reference to a
low-level matrix. The low-level matrices provide one or more test assertions for each TCB
interface element and C2 requirement element support claim. A test strategy accompanies each
test assertion to provide the reviewer with insight into how IBM planned to test the assertion.

Each test case is a grouping of tests that exercise one or more test assertion(s) for the various
security relevant functions of the security mechanism interfaces. Test cases that are logically
associated and that may be run within a single test build are grouped into test units. A Test Result
Journal indicates the associated test assertion, describes the test, and records a PASS/FAIL result
for each test case within a test unit. Figure 8-1 illustrates the relationship between these
documents.

8.5.2 Test Philosophy
IBM's test philosophy is to test the security mechanisms of the RS/6000 Distributed System by
exercising the interface to the TCB and viewing the TCB behavior. Mainly, IBM’s approach to
testing is black box testing, as defined in section 3.3.1 of A Guide to Understanding Security
Testing and Test Documentation in Trusted Systems. The testing of some security features, e.g.
object reuse, do not lend themselves to this type of testing and so an alternate means is exercised.
In most cases, this is performed through an analysis of the system design and/or code.

Final Evaluation Report: IBM RS/6000 Distributed System

187

Test Matrix
Document

•Test Strategy
•Test Scope
•Test Environment
•Entry/Exit Criteria
•Test Requirements

•High Level Matrices

I/F C2 Requirements

•Mid Level Matrices

I/F Desc Rqmt I/F Desc Rqmt

•Low Level Matrices

 I/F Assertion Strategy

 I/F Assertion Strategy

 I/F Assertion Strategy

•Access Control
 Object Description

•Object Reuse
 Object Description

•TCB Protection
 Test Type Description

Assertion Strategy

Assertion Strategy

Assertion Strategy

Test Cases
• Title
• Assertion 1
• Strategy 1
• Code 1

•Initialize
•Execute
•Compare Results
•Clean-up
•Return Code

• Assertion 2 …

Test Journal

•Test Header Info
•Test Unit 1

•Test Case 1
•Assertion 1

•Return Code
•Result

•Test Case 2
•Assertion 1

•Return Code
•Result

•Test Unit 2
•Test Case 1

•Assertion 1
•Return Code
•Result

•Assertion 2
•Return Code
•Result

•Assertion 3
•…

•Test Summary Results

Figure 8-1. Relationships between IBM Test Documentation. The Test Matrix Document
provides an organized view into IBM’s traditional test documentation.

For the testing of object reuse, gray box testing as defined in section 3.3.3 of A Guide to
Understanding Security Testing and Test Documentation in Trusted Systems, is used. System
integrity is tested through running the diagnostics outside of the secure state, i.e. in single user or
"maintenance mode" only.

8.5.3 Test Mechanisms

8.5.3.1 Automation

Most of the tests in the security test suite are automated. Tests that already existed in IBM’s test
suite and most tests that were added to the RS/6000 Distributed System test suite to satisfy C2
testing requirements are automated. Tests which could not be converted to automatic tests
efficiently are manual.

Final Evaluation Report: IBM RS/6000 Distributed System

188

8.5.3.2 Configuration Control

For both automated and manual tests the Test Result Journals for all test cases contain the
following information:

• Date and time of the run.

• Tester, driving host (as required), and hostnames of machines used.

• Hardware configuration information from each machine used, i.e. the output of LSCFG -V .

• Software configuration information from each machine used, i.e. the output of LSLPP -L and
INSTFIX -IK if required.

• Test journal file - the low level output of the test.

• Test net results - a context sensitive difference between the test journal file and the test
baseline file.

8.5.3.3 Test Configurations

The test cases were run on the following configurations. The following is a representative sample
of available configurations within the evaluation configuration.

• A stand-alone configuration; administrative master (I&A server) and client are the same
machine. (43P, F50, S70)

• A network of 3 machines; one administrative master (I&A server) and 2 clients, and 1
Ethernet LANs and 1 Token Ring; (F50 as administrative master).

8.5.4 Test Coverage by Requirement
The evaluated systems contain no unique hardware or code and are 100 percent commercially
available. As such, the quality controls built into the development, test, and service processes for
AIX play a role in the functional assurance of the system.

The base release of AIX was subjected to five months of intensive testing by the AIX Product
Test Lab (APT). All AIX program temporary fixes generated are regression tested by the APAR
Regression Test Lab (ART lab). In addition to APT and the ART lab testing, AIX conforms to
standards and has gone through a number of branding tests performed by the Open Systems
Conformance Center. The most recent exercise for AIX was UNIX98 branding.

In addition to functional testing, IBM also tested the security mechanisms that support the
following C2 policies:

• Discretionary Access Control,

• Identification & Authentication,

• Audit,

• Object Reuse, and

• System Architecture.

 Each of these policies is included in the TMD as columns.

Final Evaluation Report: IBM RS/6000 Distributed System

189

 The interface that exercises control of these policies is described in the ISD. The evaluation team
analyzed the ISD and the system design to ensure that all TCB interfaces were included and
accurately defined in the ISD. The following interfaces are included in the TMD as rows.

• System Calls

• User Commands

The individual C2 requirements for each of these policies are reflected in the lower level matrices.
Correct enforcement of the C2 policies, as required in the C2 requirements, is described in IBM
design documents including the ASD, man pages, and other design documents. Test assertions for
each interface are formed from C2 requirements and stated design behavior. Each test assertion is
included in one or more test cases. The test cases were run and checked for success.

8.5.4.1 Access Control (DAC)

Discretionary access control tests exist for each interface that controls or specifies access to
named objects.

8.5.4.2 Audit

Audit tests exist for each interface that specifies what is audited, cuts audit records, accesses audit
data, or performs audit post processing.

8.5.4.3 Identification and Authentication

Identification and authentication tests exist for each interface that provides I&A capabilities or
determines access to authentication data.

8.5.4.4 System Architecture

System Architecture tests exist for each interface that enforces the TCB isolation property. The
evaluation team reviewed the system architecture for any architectural features that the system
depends upon to enforce its security policy and ensured that each of these features was adequately
tested. These features include proper access modes on TCB files, and protection of TCB ports
(e.g. port 6000).

8.5.4.5 Object Reuse

Object Reuse tests exist for each interface that allocates new resources or that can view the affect
of the allocation of new objects. IBM employed the gray-box method of testing by analyzing the
methods (initialization, clearing, storage management) employed by the RS/6000 Distributed
System for ensuring that residual data was not available to untrusted processes. IBM’s analysis
ensured 1) that each of these methods did effectively eliminate residual data and 2) that every
allocation of new objects invoked one of these methods.

Final Evaluation Report: IBM RS/6000 Distributed System

190

8.5.5 Evaluation Team Testing
The evaluation team independently executed and reviewed the results of the entire IBM security
test suite as well as conducted its own security tests. The evaluation team

• ran vendor test suites on all three hardware platforms and in representative configurations
to ensure that the security mechanisms of the product are tested,

• performed ad hoc testing to search for obvious flaws,

• documented and tested assertions to verify vendor test and design documentation, SFUG,
TFM, and system integrity tools,

• documented and tested assertions for bringing up the system using the TFM,

• tested the usefulness of the SFUG to an ordinary user, and

• ran representative sample of the system integrity tools.

Details of the team’s security testing plan are contained in the evaluation team test report.

Final Evaluation Report: IBM RS/6000 Distributed System

191

9. EVALUATION AS A TCSEC C2 SYSTEM

9.1 Discretionary Access Control

9.1.1 Requirement
The TCB shall define and control access between named users and named objects (e.g., files and
programs) in the ADP system. The enforcement mechanism (e.g., self/group/public controls,
access control lists) shall allow users to specify and control sharing of those objects by named
individuals, or defined groups of individuals, or by both, and shall either by explicit user action or
by default, provide that objects are protected from unauthorized access. These access controls
shall be capable of including or excluding access to the granularity of a single user. Access
permission to an object by users not already possessing access permission shall only be assigned
by authorized users.

9.1.2 Interpretations

I-0002 Delayed revocation of DAC access. A TCB is not required to provide any mechanism for
the immediate revocation of DAC access to an object where access has already been established
(e.g., opened) when access to that object is reduced. It is sufficient for the SFUG and other
documentation to describe the product’s revocation policy. However, a change in DAC
permissions shall have an immediate effect on attempts to establish new access to that object.

I-0020 DAC authority for assignment. A TCB need not provide all users with the capability
to control the sharing of objects. A DAC policy where only system administrators assign access to
objects can satisfy the DAC requirement. The SFUG shall clearly identify the roles or user types
(e.g., system administrator) who can control sharing.

I-0053 Public objects and DAC. An object for which the TCB unconditionally permits all
subjects "read" access shall be considered a public object, provided that only the TCB or
privileged subjects may create, delete, or modify the object. No discretionary access checks or
auditing are required for "read" accesses to such objects. Attempts to create, delete, or modify
such objects shall be considered security-relevant events, and therefore, controlled and auditable.
Objects that all subjects can read must be, implicitly, system low.

I-0222 Passwords not acceptable for DAC. The TCB shall not depend solely on
passwords as an access control mechanism. If passwords are employed as part of an access
control mechanism, they shall not be considered sufficient to satisfy any aspect of the DAC
requirement.

I-0226 Initial protection by default (C1-CI-03-86) A system, to pass the Discretionary
Access Control requirements at the C2 level and higher, must provide protection by default for all
objects at creation time. This may be done through the enforcing of a restrictive default access
control on newly created objects or by requiring the user to explicitly specify the desired access

Final Evaluation Report: IBM RS/6000 Distributed System

192

controls on the object when he requests its creation. In either case, there shall be no window of
vulnerability through which unauthorized access may be gained to newly created objects.

I-0312 Set-ID mechanism and the DAC requirement. The set-ID mechanism can be part of
an acceptable DAC implementation.

9.1.3 Applicable Features

9.1.3.1 Requirement

The named objects in the RS/6000 Distributed System are discussed in Chapter 6. They are
ordinary files, directories, block and character device special files, socket special files, FIFOs
(named pipes), and System V IPC. A DAC policy is defined for each of these objects. The DAC
policy is based on both the user identity and group membership associated with subjects.

All file system objects support both permission bit and Access Control List (ACL) mechanisms as
discussed in Chapter 7. The permission bit mechanism allows control of sharing by named
individuals, groups, or both, given appropriate administrative setup of groups. The extended
permissions mechanism allows this directly, without administrative intervention. In addition,
extended permissions permit a list of named individuals and/or groups to be specified with
particular modes, including no access.

Propagation of access rights without DAC revalidation is limited to inheritance at process
creation. It is not possible to pass access rights (e.g. file descriptors) between unrelated processes.

Named objects are protected from unauthorized access by default through the application of the
creator’s umask upon creation. The default umask is administratively set to 0700. The user is
cautioned in the SFUG to not change the umask. For IPC named objects, the permissions must be
set by the creator at creation. If permissions are not specified the access is set to owner only until
the owner changes the permissions to allow access.

9.1.3.2 Interpretations

Changes in DAC permissions have an immediate effect on attempts to establish new access to an
object. The SFUG describes the revocation policy [I-0002].

For all classes of objects in RS/6000 Distributed System creators have the ability to specify and
control sharing of the objects. All users have the capability to control the sharing of any named
object they own [I-0020].

Public objects can be read by all subjects and written only by trusted processes. There are no
DAC controls on public objects in the RS/6000 Distributed System. Root is the only user that can
modify, create or delete public objects [I-0053].

The RS/6000 Distributed System does not rely on passwords as a means of enforcing
discretionary access control [I-0222].

Final Evaluation Report: IBM RS/6000 Distributed System

193

FSO objects are protected from unauthorized access by default through the application of the
umask and permission bits upon creation. IPC objects are protected from unauthorized access by
default through the application of the umask upon creation. Upon creation the creator sets
permissions on IPC objects to protect them from unauthorized access. If not set the default is null
rendering the object unusable, with the exception of shared memory, which has an interface that
allows the creator to modify the permissions. The permissions are stored in the kernel ipc_perm
structure [I-0226].

AIX includes a set-ID mechanism [I-0312].

9.1.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Discretionary Access Control requirement.

9.2 Object Reuse

9.2.1 Requirement
All authorizations to the information contained within a storage object shall be revoked prior to
initial assignment, allocation or reallocation to a subject from the TCB’s pool of unused storage
objects. No information, including encrypted representations of information, produced by a prior
subject’s actions is to be available to any subject that obtains access to an object that has been
released back to the system.

9.2.2 Interpretations

I-0041 Object reuse applies to all system resources. Analysis for residual data shall be
performed on all sharable objects and their attributes (i.e., objects to which MAC or DAC are
applied) and other system resources (e.g., stacks, process memory).

9.2.3 Applicable Features

9.2.3.1 Requirement

All resources are protected from Object Reuse (scavenging) by one of three techniques: explicit
initialization, explicit clearing, or storage management. Initialization sets the resource’s contents
to a known state before the resource is made accessible to a subject after creation. Clearing sets
the resource’s contents to a known state when the resource is returned to the TCB for re-use.
Storage management ensures that uninitialized storage is never accessible. No information,
objects, storage, or buffers in the RS/6000 Distributed System are accessible outside the TCB
except to subjects which are authorized such access.

Most resources are explicitly initialized at creation or allocation. Ordinary files, directories, and
process memory are initialized whenever a new page is requested, Directory entries are explicitly
cleared on deletion. Although not all parts of process context (e.g. floating-point registers) are

Final Evaluation Report: IBM RS/6000 Distributed System

194

saved on every context switch, these are managed to ensure that no subject ever sees "left over"
information produced by another subject.

9.2.3.2 Interpretations

Object reuse analysis was performed on all named objects and all storage objects. The RS/6000
Distributed System does not allow any user action prior to I&A other than entering the user name
and password [I-0041].

9.2.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Object Reuse requirement.

9.3 Identification and Authentication

9.3.1 Requirement
The TCB shall require users to identify themselves to it before beginning to perform any other
actions that the TCB is expected to mediate. Furthermore, the TCB shall use a protected
mechanism (e.g., passwords) to authenticate the user’s identity. The TCB shall protect
authentication data so that it cannot be accessed by any unauthorized user. The TCB shall be able
to enforce individual accountability by providing the capability to uniquely identify each individual
ADP system user. The TCB shall also provide the capability of associating this identity with all
auditable actions taken by that individual.

9.3.2 Interpretations

I-0001 Delayed enforcement of authorization change. If a TCB supports security-relevant
authorizations then it shall provide a method for immediate enforcement of removing those
authorizations. However, the immediate method (e.g., shutting the system down) need not be the
usual method for enforcement. The TFM shall describe both the usual enforcement of granting
and removing authorizations and, if the immediate enforcement method is different from the usual
one, how an administrator can cause immediate enforcement.

I-0096 Blanking passwords. The TCB shall not produce a visible display of any authentication
data entered through the keyboard (e.g., by echoing).

I-0225 Individual accountability in a server environment (C1-CI-02-86) The
configuration [an operating system that allows the ability for a user to authenticate himself to the
TCB and connect directly to another user’s process, if the connecting userid has been specifically
granted this access by an authorized user] is allowed. If users of the ADP system are
authenticated and have been authorized the ability to connect to another user's process, then DAC
is not compromised, provided that the establishment of the path is auditable.

Final Evaluation Report: IBM RS/6000 Distributed System

195

I-0233 Operator logon at system console (C1-CI-04-86) The ‘‘operator’s console’’ will be
considered an exception to the C1, C2, and B1 identification and authentication requirements. The
key to this revised definition is the special status of the console, and the physical protection that
must be provided. Those consoles outside the physical perimeter of the computer room must be
protected by the same physical and procedural mechanisms as the system hardware itself, or must
require the use of an identification and authentication mechanism under the control of the TCB.

To meet the various audit requirements, if multiple operators’ consoles are used, the TCB must
generate an audit record that identifies from which particular console the auditable event
originated. In addition, the trusted facility manual must explain that a log should be maintained of
who had access to any particular operator's console at any particular time. Even if only one
console is available, such a record is necessary to trace specific events to specific individuals.

I-0234 One-time authentication mechanisms can be acceptable.Single-use authentication
mechanisms, such as one-time password devices, can be part of an acceptable identification and
authentication mechanism.

I-0240 Passwords may be used for card input. The card input of batch jobs may contain
human-readable user passwords. The TFM and the SFUG for the product shall explain the risks in
placing passwords on card input and shall suggest procedures to mitigate that risk.

I-0288 Actions allowed before I&A. Prior to having been identified and authenticated by
the TCB, a user communicating with the TCB may be allowed to perform only those actions that
would not require TCB mediation.

I-0314 Password changes do not require authentication It is not necessary that requests to
modify authentication data require reauthentication of the requester's identity at the time of the
request.

9.3.3 Applicable Features

9.3.3.1 Requirement

In the RS6000/Distributed System users are required to identify themselves to the system before
performing any actions that the TCB is expected to mediate. Authentication data is maintained in
the /etc/security databases. This data includes per-user passwords stored in an encrypted form.
The security databases are protected files accessible only to the TCB. User passwords are subject
to length and complexity requirements, and can be configured to expire periodically on a per-user
basis. User passwords are disabled after too many failed attempts.

For every service request that may result in a change of identity (e.g. telnet, FTP, rexec) the TCB
performs a login dialogue and validates the user's proposed identity against the authentication
provided. Other service requests that do not allow a change in identity (e.g. rsh, rcp, rlogin), the
client host passes the LUID to the server, and the server trusts that identity and relies the
authentication performed by the client host TCB.

Final Evaluation Report: IBM RS/6000 Distributed System

196

Every user is identified by a unique user name, with which is associated a unique numeric user ID
(LUID). This numeric ID is set during the initial login dialogue and is associated with all the
subjects created as a consequence of the request (including all the processes created during a
login session), and is recorded in the user ID field of audit records.

Technical aspects of these mechanisms are covered in section 5.3.10, Identification and
Authentication; section 5.3.11, Interactive Login and Related Mechanisms; and section 7.1,
Identification and Authentication (Policy).

9.3.3.2 Interpretations

The RS/6000 Distributed System does not support security-relevant authorizations [I-0001].

The RS/6000 Distributed System does not echo passwords [I-0096].

The RS/6000 Distributed System does not allow a user to authenticate himself to the TCB and
connect directly to another user’s process [I-0225].

The RS/6000 Distributed System does not have an operator’s console [I-0233].

The RS/6000 Distributed System does not include single-use authentication mechanisms [I-0234].

The RS/6000 Distributed System does not support card-based input of batch jobs [I-0240].

The RS/6000 Distributed System does not allow a non-authenticated user to perform any actions
that would require TCB mediation [I-0288].

In the RS/6000 Distributed System, requests to modify authentication data require
reauthentication of the requester's identity at the time of the request [I-0314]

9.3.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Identification Authentication requirement.

9.4 Audit

9.4.1 Requirement
The TCB shall be able to create, maintain, and protect from modification or unauthorized access
or destruction an audit trail of accesses to the objects it protects. The audit data shall be protected
by the TCB so that read access to it is limited to those who are authorized for audit data. The
TCB shall be able to record the following types of events: use of identification and authentication
mechanisms, introduction of objects into a user's address space (e.g., file open, program
initialization), deletion of objects, actions taken by computer operators and system administrators
and/or system security officers, and other security relevant events. For each recorded event, the
audit record shall identify: date and time of the event, user, type of event, and success or failure of
the event. For identification/authentication events the origin of request (e.g., terminal ID) shall be

Final Evaluation Report: IBM RS/6000 Distributed System

197

included in the audit record. For events that introduce an object into a user’s address space and for
object deletion events the audit record shall include the name of the object. The ADP system
administrator shall be able to selectively audit the actions of any one or more users based on
individual identity.

9.4.2 Interpretations

I-0004 Enforcement of audit settings consistent with protection goals. If the TCB supports
the selection of events to be audited, it shall provide a method for immediate enforcement of a
change in auditing settings (e.g., to audit a specified user, to audit objects at a particular
sensitivity level); however, the immediate method (e.g., shutting the system down) need not be the
usual method for enforcement. The TFM shall describe both the usual enforcement of audit
settings and, if the immediate enforcement method is different from the usual one, how an
administrator can cause immediate enforcement. The TFM shall describe the consequences of
changing an audit state dynamically if such changes could result in incomplete or misleading audit
data.

I-0005 Action for audit log overflow. When the TCB becomes unable to collect audit data,
it shall give a clear indication of this condition and take a pre-specified action. The system
implementation may allow an administrator to choose from a range of options. One of the options
that may be chosen by the administrator (or, if no choice is available, the only action) shall be that
the system cease performing auditable events when the TCB is unable to collect audit data.
Choosing an overflow action shall be considered a security-relevant administrative event for the
purposes of auditing. The TFM shall fully describe the administrator’s options.

I-0006 Audit of user-id for invalid login. When the audit mechanism is required to be capable
of producing a record of each login attempt, on failed login attempts it is not required to record in
the audit record the character string supplied as the user identity.

I-0043 Auditing use of unnamed pipe. In products that support mechanisms similar to
unnamed pipes in UNIX systems, the creation of an unnamed pipe shall be auditable; however, the
auditing may be delayed until the pipe becomes sharable with another object (e.g., the creation of
a child or the passing of the pipe’s descriptor to another subject). At each point that the unnamed
pipe is shared, the sharing must be auditable.

I-0073 OK to audit decision regardless of whether action completed. Auditing the
attempted introduction of an object at the point of passing the security access control checks
satisfies the above requirement, even though the object may not actually be introduced into the
subject’s address space because of failing later checks not related to security.

I-0208 Auditing of “object not found”. (C1-CI-07-84) The ability to audit ‘‘object not
found’’ is not required at the C2 or B1 level. It is required at the B2 level and above if it results in
a covert channel.

I-0216 Meaning of “selectively audit''. (C1-CI-02-85) ‘‘Selectively audit’’ means that the
audit mechanism must be sufficiently flexible for the system administrator to obtain information
regarding system activity based upon a user’s identity or upon object security level. Both of these

Final Evaluation Report: IBM RS/6000 Distributed System

198

capabilities must exist, the ‘‘or’’ is meant to allow the security administrator the decision to audit
one or the other or both. Audit reduction tools, when supplied by the vendor, must be maintained
under the same configuration control system as the remainder of the system.

I-0247 Boundaries and documentation for loss of audit data. (C1-CI-02-89) The
occurrence of events that may cause audit data to be unpredictably lost must be extremely rare
(i.e., not under normal system load) and the number of records lost must be small (i.e., a few
bytes as opposed to thousands of bytes). The TFM must completely identify the circumstances of
potential audit data loss along with the possible quantity that may be lost. It must be extremely
difficult for an untrusted process to cause the loss of audit data. Again, this possibility must be
fully defined in the TFM.

The loss of any audit data should be clearly indicated and the action taken should be identified. In
addition, the amount of audit data lost must be available. By default, the action taken must be for
the system to cease performing events that would have been otherwise audited (e.g., halt
temporarily, shut down). The system may allow the administrator to explicitly specify an alternate
action to be taken when the condition arises (e.g., continue operating).

I-0286 Auditing unadvertised TCB interfaces. The TCB shall be capable of auditing all
security-relevant events that can occur during the operation of the evaluated configuration,
including events that may result from the use of TCB interfaces not advertised for general use.

9.4.3 Applicable Features

9.4.3.1 Requirement

Each host in the RS/6000 Distributed System maintains an audit trail file. The trail file is protected
by file system permissions. The root user and audit group have read access, and only the root user
has write access to the trail file. See section 5.3.15.6, Audit File Protection for further details.

The auditable events include: use of identifications and authentication mechanisms, introduction
of objects into a user’s address space, operator and administrator actions, and other events. A
summary of the available audit events is located in Appendix G. The origin of I&A requests and
object introduction and deletion information is stored as a portion of the variable length record.

The audit record includes the date and time of the event, the user, type of event, and success or
failure of the event. The audit record format is located in the Trusted Facilities Manual.

The system administrator can selectively audit on a per-user or per-object basis. Per-user auditing
allows the administrator to specify specific classes of audit events that will be recorded for that
user. Each process stores a copy of the audit classes that apply to that user as part of the proc
table. An audit class is a subset of the total number of audit events available. Per-object auditing
allows the administrator to specify certain named objects that will be audited. These objects can
be audited based on accesses of a specified mode (read/write/execute) and record the result of the
access attempt (success/failure). More information on the use of AUDIT commands to accomplish
audit selection can be found in section 5.3.15.2, Audit Control and section 5.3.15.4, Audit Record
Processing.

Final Evaluation Report: IBM RS/6000 Distributed System

199

9.4.3.2 Interpretations

Immediate enforcement can be forced by rebooting all hosts in the distributed system. The TFM
describes the immediate enforcement of audit settings methods. If the audit configuration is
changed without rebooting all hosts in the network, some user sessions may reflect the old
settings and others may reflect the new settings. The TFM describes this potential result and the
procedures to correct it [I-0004].

AIX provides BIN mode auditing. If the bin is unable to dump events into the audit trail because
it has run out of disk space, it causes a system panic and the system halts. The TFM describes the
use of the panic mode administrator option [I-0005].

The RS/6000 Distributed System does not record the character string supplied as the user identity
for failed login attempts [I-0006].

In AIX, auditing of unnamed pipes occurs when the pipe is created [I-0043].

Auditing is performed at point of passing the security access control checks. [I-0073].

The RS/6000 Distributed System does not provide the ability to audit ‘‘object not found’’ [I-
0208].

In addition to audit pre-selection, AIX provides tools (specifically, AUDITSELECT) for performing
post-selection by user identity [I-0216].

Audit data is only lost if the system fails (i.e., crashes) or runs out of disk space to store audit
data. AIX is a robust operating system and not prone to crashes. Thus, it is difficult to cause loss
of audit data in this manner. The administrator can place audit data in a file system where non-
administrative users do not have the ability to create files, thus reducing the likelihood of running
out of disk space. The number of audit records unpredictably lost may be limited by creating small
buffers and flushing these often. The worst case loss is 128K per host. The worst case can be
mitigated through bin size and byte threshold parameters [I-0247].

There are a small number of TCB interfaces that are not advertised for general use. These have
been documented in the ISD, they are tested and the security relevant aspects are auditable [I-
0286].

9.4.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Audit requirement.

9.5 System Architecture

9.5.1 Requirement
The TCB shall maintain a domain for its own execution that protects it from external interference
or tampering (e.g., by modification of its code or data structures). Resources controlled by the

Final Evaluation Report: IBM RS/6000 Distributed System

200

TCB may be a defined subset of the subjects and objects in the ADP system. The TCB shall
isolate the resources to be protected so that they are subject to the access control and auditing
requirements.

9.5.2 Interpretations

I-0213 Administrator interface is part of TCB. Those components of the product that
provide the interfaces required for performing administrative actions shall be considered TCB
components. The "administrative actions" to which this interpretation applies shall be those that
are defined in the TFM to be performed by administrative personnel (e.g., operators, system
administrators, system security officers) while the product is in its secure operational state. The
TFM shall clearly identify which mechanisms are, and which are not, acceptable for performing
each administrative action.

I-0223 Software-Based two-state architectures are acceptable (C1-CI-04-85) Software-
based architectures are able to provide process separation and a two state architecture with
sufficient assurance to meet the B1 level requirements for System Architecture. Simply because a
two-state architecture is provided and maintained primarily by software should not lead to the
assumption of its being less secure than hardware in implementing security features.

9.5.3 Applicable Features

9.5.3.1 Requirement

The RS/6000 Distributed System TCB described in section 5.1, TCB Structure, is tamper-
resistant because all TCB programs, data, and other components are protected from unauthorized
access via numerous mechanisms. The kernel TCB software and data are protected by the
hardware memory protection mechanisms. The memory and process management components of
the kernel ensure a user process cannot access kernel storage or storage belonging to other
processes. Non-kernel TCB software and data are protected by DAC, and by process isolation
mechanisms. The reserved user ID root owns TCB directories and files. The permissions of the
TCB directories and files are set to restrict modification from unauthorized users.

All system-protected resources are managed by the TCB. Because all TCB data structures are
protected, these resources can be directly manipulated only by the TCB, through defined TCB
interfaces. Resources managed by the kernel software can only be manipulated while running in
kernel mode. Processes run in user mode, and execution in the kernel occurs only as the result of
an exception or interrupt. The TCB hardware and the kernel software handling these events
ensure that the kernel is entered only at pre-determined locations, and within pre-determined
parameters. Thus, all kernel-managed resources are protected such that only the appropriate
kernel software manipulates them. Trusted processes implement resources managed outside the
kernel. The trusted processes and the data defining the resources are protected as described above
depending on the type of interface. For directly invoked trusted processes the program invocation
mechanism ensures that the trusted process always starts in a protected environment at a

Final Evaluation Report: IBM RS/6000 Distributed System

201

predetermined point. Other trusted process interfaces are started during system initialization and
use well-defined protocol or file system mechanisms to receive requests.

9.5.3.2 Interpretations

The administrative interfaces (including WSM) are part of the TCB. The TFM defines those
actions which must be performed by the administrator, and which mechanisms are permissible for
performing each action [I-0213].

The RS/6000 Distributed System has a hardware-based two-state architecture. [I-0223].

9.5.4 Conclusion
The RS/6000 Distributed System satisfies the C2 System Architecture requirement.

9.6 System Integrity

9.6.1 Requirement
Hardware and/or software features shall be provided that can be used to periodically validate the
correct operation of the on-site hardware and firmware elements of the TCB.

9.6.2 Interpretations
I-0144 Availability of diagnostics. If the features provided by the vendor to meet this
requirement cannot be exercised by the purchaser of the product, the vendor shall make available
appropriate services to use the features as needed to meet the requirement. These services shall be
available on an "on-demand" basis.

9.6.3 Applicable Features

9.6.3.1 Requirement

IBM provides software that validates the correct operation of hardware and firmware elements of
the TCB. Each of the three models included in the evaluated configuration (43P, F50, and S70)
includes Power On Self-Test (POST) firmware in non-volatile memory. The POST runs when
each computer is powered-on or reset and performs the following tests:

• registers read and write

• settable bits are set and reset (stuck fault testing)

• level 2 cache read and write (pattern testing)

• memory read and write (pattern testing)

• device controllers read and write(e.g., keyboard, serial port)

Final Evaluation Report: IBM RS/6000 Distributed System

202

 Unlike the 43P and F50, the S70 has a separate service processor. The POST test for the S70
performs the following:

• hardware wire tests (e.g., solder joints)

• Built-in Self Test

• service processor test

IBM also provides various diagnostics for the remaining hardware resources of the evaluated
configuration. These diagnostics perform the following tests:

• interrupts

• DMA (read and write)

• configuration register read and write

• I/O register read and write

• read/write capability

• input/output capability

• write protect capability

• adapter initialization

• internal loopback (transmit and receive)

• external loopback (transmit and receive)

See section 8.2, System Integrity Tests for more details.

9.6.3.2 Interpretations

The purchaser of the RS/6000 Distributed System can exercise the system integrity features. [I-
0144]

9.6.4 Conclusion
The RS/6000 Distributed System satisfies the C2 System Integrity requirement.

9.7 Security Testing

9.7.1 Requirement
The security mechanisms of the ADP system shall be tested and found to work as claimed in the
system documentation. Testing shall be done to assure that there are no obvious ways for an
unauthorized user to bypass or otherwise defeat the security protection mechanisms of the TCB.
Testing shall also include a search for obvious flaws that would allow violation of resource
isolation, or that would permit unauthorized access to the audit or authentication data.

Final Evaluation Report: IBM RS/6000 Distributed System

203

9.7.2 Interpretations

I-0170 Functional tests required for object reuse. TCB interface(s) that allow manipulation and
review of the contents of a subject’s address space and of other resources available at the TCB
interface (storage and named objects, device) shall have functional tests included in the vendor
test suite to supplement the analysis for object reuse.

9.7.3 Applicable Features

9.7.3.1 Requirement

IBM has submitted a test matrix document, test plan and other test documents containing test
requirements, test coverage, test assertions, test procedures, test cases, and test journals for the
vendor testing performed on the RS/6000 Distributed System. The evaluation team reviewed
these test documents and performed a Test Coverage Analysis. The team worked with IBM to
revise the test suite to meet C2 standards.

The evaluation team spent 1 week testing the RS/6000 Distributed System at the IBM facilities in
Austin, Texas. The team independently installed the RS/6000 Distributed System Software onto
the hardware platforms. The team then executed and reviewed the results of the entire IBM
security test suite, as well as conducted its own security tests. All test defects were documented
during team testing. IBM revised their test documentation and test suite. A subset of the
evaluation team performed a review of the revised documentation to ensure defects were properly
addressed and ran a complete regression test on all hardware platforms.

9.7.3.2 Interpretations

The team test report documents the team’s testing for object reuse [I-0170].

9.7.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Security Testing requirement.

9.8 Security Features User’s Guide

9.8.1 Requirement
A single summary, chapter, or manual in user documentation shall describe the protection
mechanisms provided by the TCB, guidelines on their use, and how they interact with one
another.

Final Evaluation Report: IBM RS/6000 Distributed System

204

9.8.2 Interpretations

I-0244 Flexibility in packaging SFUG. All SFUG documentation shall be in a form that
system administrators and users can read at the time that an understanding of the topics covered is
needed to use the system in a secure manner (i.e., it shall not be required that the user login in
order to read instructions about how to login). The documents or portions of documents that
make up the SFUG shall be precisely identified. There are no further restrictions on the packaging
(one document, several documents, parts of several documents) or delivery (hardcopy, online) of
the SFUG.

9.8.3 Applicable Features

9.8.3.1 Requirement

The RS/6000 Distributed System Security Features User’s Guide (SFUG) provides users with an
overview of the RS/6000 Distributed System, security evaluations, and the impact of evaluations
on the users assurance in the evaluated configuration. It discusses the security policies enforced
by the system (i.e., I&A, DAC, Object Reuse, and Audit) along with the system assurances (i.e.,
system architecture, system integrity, and system testing). The SFUG also contains descriptions of
how to use the system securely through various user functions including logging in and out of the
system, changing your identity, changing your password, accessing files and devices, handling files
and directories, accessing print and network services, and using electronic mail.

9.8.3.2 Interpretations

This SFUG is written in hypertext mark-up language (HTML) and is viewable from the browser
included in the evaluated configuration. The document contains hyperlinks to additional user
information including detailed instructions and examples. All these files are shipped with the
system and are accessible by any user of the system. The TFM directs the administrator to make
the SFUG available to users prior to them logging on by printing out a copy of the SFUG and
distributing it to each user [I-0244].

9.8.4 Conclusion
The RS/6000 Distributed System satisfies the C2 security features user’s guide requirement.

9.9 Trusted Facility Manual

9.9.1 Requirement
A manual addressed to the ADP system administrator shall present cautions about functions and
privileges that should be controlled when running a secure facility. The procedures for examining
and maintaining the audit files as well as the detailed audit record structure for each type of audit
event shall be given.

Final Evaluation Report: IBM RS/6000 Distributed System

205

9.9.2 Interpretations

I-0046 Detailed audit record structure. The documentation of the detailed audit record
structure may describe either the raw records produced by the audit mechanism or the output of
an audit post-processing tool as long as the records described contain the information specified in
the audit requirement. If the output of the audit post-processing tool is described, the tool is
considered part of the TCB.

I-0069 Flexibility in packaging TFM. All TFM documentation shall be in a form that
system administrators and users can read at the time that an understanding of the topics covered is
needed to use the system in a secure manner (i.e., it shall not be required that the user login in
order to read instructions about how to bring up the system). The documents or portions of
documents that make up the TFM shall be precisely identified. There are no further restrictions on
the packaging (one document, several documents, parts of several documents) or delivery
(hardcopy, online) of the TFM.

I-0247 Boundaries and documentation for loss of audit data. (C1-CI-02-89) The
occurrence of events that may cause audit data to be unpredictably lost must be extremely rare
(i.e., not under normal system load) and the number of records lost must be small (i.e., a few
bytes as opposed to thousands of bytes). The TFM must completely identify the circumstances of
potential audit data loss along with the possible quantity that may be lost. It must be extremely
difficult for an untrusted process to cause the loss of audit data. Again, this possibility must be
fully defined in the TFM.

The loss of any audit data should be clearly indicated and the action taken should be identified. In
addition, the amount of audit data lost must be available. By default, the action taken must be for
the system to cease performing events that would have been otherwise audited (e.g., halt
temporarily, shut down). The system may allow the administrator to explicitly specify an alternate
action to be taken when the condition arises (e.g., continue operating).

9.9.3 Applicable Features

9.9.3.1 Requirement

The RS/6000 Trusted Facilities Manual is intended for system administrators. It provides an
overview of the system, describes security evaluations and the impact of evaluations on the
administrator’s assurance in the system. The TFM describes the evaluated configuration including
a listing of the evaluated hardware and software and system documentation. It also discusses the
users, subjects, objects and devices analyzed in the evaluation. The TFM also describes the
security features provided by the IBM RS/6000 Distributed System running AIX (i.e., the TCB,
discretionary access control, object reuse, tamperproof isolation of the TCB and user processes,
auditing, and assurances).

Final Evaluation Report: IBM RS/6000 Distributed System

206

The remainder of the TFM provides guidance on the installation, management, administration
(network and printing), and auditing of the RS/6000 Distributed System and its TCB hardware
and software. Details of these administrative procedures are provided by references to the
following documents:

• AIX Version 4.3 Installation Guide

• AIX Version 4.3 System Management Guide: Operating System and Devices

• AIX Version 4.3 System Management Guide: Communications and Networks

• AIX Version 4.3 Guide to Printers and Printing

Details are provided by references to the guides listed above. The guides were written to cover a
variety of RS/6000 configurations and uses including hardware and software that are not
permitted in the C2 evaluated configuration. The TFM provides a detailed instructions and
warnings to administrators for the installation, management, and administration of an evaluated
system. The TFM,

� warns the administrator of what not to do (e.g., do not install unevaluated hardware),
� warns the administrator regarding excluded products, services, or hardware (e.g., do not

use SMIT for the administration of the system.),
� and provides other relevant information (e.g., possible loss of audit files).

9.9.3.2 Interpretations

The TFM defines the audit record structure as output from the AUDITPR command. AUDITPR is part
of the TCB [I-0046].

The “AIX Version 4.3.1 TCSEC Evaluated C2 Security Release Notes” (hardcopy) is included
with the RS/6000 Distributed System. This document instructs the administrator how to install the
C2 system and gain access to the TFM (HTML). All files that make up the TFM are included in
the RS/6000 Distributed System CD [I-0069].

The TFM describes the conditions and circumstances in which audit loss can occur, namely the
exhaustion of disk space available to the /audit directory, system halt, or to a system crash. The
TFM explains that in the case of a system crash, all data in physical memory is lost, including any
audit records that had not yet been flushed to disk. The audit subsystem enforces a 32K limit on
the size of an individual audit record, and only one audit record can be in transit between a thread
and the kernel at any given time. The RS/6000 Distributed System TFM includes instructions to
the administrator to back up all files, including audit data, on a regular basis to avoid the loss of
data due to hard disk failures. The TFM also provides guidance on how to set audit parameters
(binsize and bytethreshold) to minimize audit data loss. Based on the recommended setting of
these parameters (64K) the amount of audit data that could be lost due to a failure is the sum of
the size of those files (128K). [I-0247]

9.9.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Trusted Facility Manual requirement.

Final Evaluation Report: IBM RS/6000 Distributed System

207

9.10 Test Documentation

9.10.1 Requirement
The system developer shall provide to the evaluators a document that describes the test plan, test
procedures that show how the security mechanisms were tested, and results of the security
mechanisms’ functional testing.

9.10.2 Interpretations

I-0170 Functional tests required for object reuse. TCB interface(s) that allow manipulation and
review of the contents of a subject’s address space and of other resources available at the TCB
interface (storage and named objects, device) shall have functional tests included in the vendor
test suite to supplement the analysis for object reuse.

I-0281 Testing system architecture functions. The test plan, procedures, and results shall
incorporate tests of the TCB interfaces to mechanisms used to isolate and protect the TCB from
external interference.

9.10.3 Applicable Features

9.10.3.1 Requirement

The IBM test documentation is described in section 8.5, Security Testing. This test
documentation includes the C2 Evaluation Test Plan, the Test Matrix Document, the Test Cases,
and the Test Journals. The test documentation was found to be adequate and sufficient with
respect to both breadth and depth of coverage.

9.10.3.2 Interpretations

The team test report documents the team’s testing for object reuse [I-0170].

The security testing includes tests of hardware and software mechanisms used to isolate and
protect the TCB from external interference. The test plan, test procedures and test results
incorporated tests of the TCB interfaces to these mechanisms. Examples include: the protection of
privileged ports, the restriction of trusted server connections to trusted clients, properly set
protection bits for TCB, memory protection, address space protection, restrictions to only legal
instructions and system calls, and protection of privileged instructions from user mode. [I-0281].

9.10.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Test Documentation requirement.

Final Evaluation Report: IBM RS/6000 Distributed System

208

9.11 Design Documentation

9.11.1 Requirement
Documentation shall be available that provides a description of the manufacturer’s philosophy of
protection and an explanation of how this philosophy is translated into the TCB. If the TCB is
composed of distinct modules, the interfaces between these modules shall be described.

9.11.2 Interpretations

I-0192 Interface manuals as design documentation. Interface-reference manuals (e.g.,
UNIX manual pages) are not sufficient, by themselves, as TCB design documentation.

I-0193 Standard system books as design documentation.Books describing the design and
implementation of a system used as a basis for a trusted system, but which are inaccurate or
incomplete for the trusted system implementation, are not sufficient as design documentation.
Such books may partially fulfill the requirement if additional documentation provides a complete
description of all differences between the book’s description and the actual system
implementation, including a satisfactory description of any parts of the TCB not described in the
book(s).

9.11.3 Applicable Features

9.11.3.1 Requirement

The RS/6000 Distributed System is a well-documented system. The following documents were
written in accordance with the PAT Guidance Working Group Form and Content of Vendor
Design Documentation.

• Philosophy of Protection (PoP) for the RS/6000 Distributed System

• Architecture Summary Document (ASD) for the RS/6000.

• Interface Summary Document (ISD) for the RS/6000 Distributed System

Additional design information was available through internal documents. Publicly available
documents are listed in Appendix E.

9.11.3.2 Interpretations

Interface-reference manuals constitute a small portion of the design documentation provided for
the RS/600 Distributed System [I-0192].

Design and implementation books constitute a small portion of the design documentation
provided for the RS/600 Distributed System. Differences (and gaps) between the books
description of the implementation and the actual implementation of the RS/6000 Distributed
System were resolved (and filled) with additional design documentation. Publicly available
examples include programming reference guides, user guides, installation manuals, and interface

Final Evaluation Report: IBM RS/6000 Distributed System

209

specifications. These are listed in Appendix E. Proprietary examples include design specifications,
design documents, architecture detailed designs, technical references, the philosophy of
protection, the interface summary manual, the architecture summary document, and the TCB
identification document. [I-0193].

9.11.4 Conclusion
The RS/6000 Distributed System satisfies the C2 Design Documentation requirement.

Final Evaluation Report: IBM RS/6000 Distributed System

210

APPENDIX A: EVALUATED HARDWARE
COMPONENTS

Table A.1 Evaluated Hardware Components.

 43P Model 150 Model F50 Model S70
Machine Type 7043 (PCI Desktop) 7025 (PCI Deskside) 7017 (PCI Rack System)
Product
Placement

Workstation Workgroup Server Enterprise Server

Physical
Configuration

Single PC-style chassis Single-rack system unit 1 System Rack
1-4 I/O Drawers

System Size Uniprocessor Mid-range High-end
Reference
Documentation

7043 43P Models 140 and
240 Service Guide
(October 1997)

7025 F50 Service Guide
(April 1997)

S70 Installation and Service
Guide
(October 1997)

Planar CHRP CHRP CHRP
Processor PowerPC 604e

Uniprocessor
PowerPC 604e
4-way SMP

IBM RS64PowerPC
up to 12-way SMP
Auxiliary Service Processor

CPU Cards Single CPU on planar
• 375 MHz (standard)

 2 cards (2 CPUs/card)
• 166 MHz F/C 4303 (upgrade

to 2-way) and F/C 4309
(second 2-way card).

• 332 MHz F/C 4357 (upgrade
to 2-way) and F/C 4359
(second 2-way card).

 3 cards (4 CPUs/card)
• F/C 9404 4-way 125 MHz
• F/C 5310 4-way 125 MHz
• F/C 5311 4-way 125 MHz

 Level 2 Cache 1 MB 256 KB/processor 4 MB/processor
 Memory
Configuration

 128 MB minimum installed,
expandable to 1 GB. 1 to 4
168-pin DIMMs with ECC:
• F/C 4149 64 MB
• F/C 4150 128 MB
• F/C 4169 256 MB

 128 MB minimum installed,
expandable to 3 GB.
2-32 200-pin DIMMs with
ECC:
• F/C 9083 Base 128 MB
• F/C 4107 64 MB
• F/C 4110 256 MB
• F/C 4106 256 MB

 R1 Memory Groups, 512 MB
minimum installed,
expandable to 16 GB, as
follows:
• F/C 9168 Base 512MB plus

0-4 F/C 4171 512MB
• F/C 4174 1024MB plus 0-4

F/C 4173 1024MB
• F/C 4176 2048MB plus 0-4

F/C 4175 2048MB
• F/C 4178 4096MB plus 0-3

F/C 4177 4096MB
 Bus
Architectures

• PowerPC local bus (64 bit)
• 1 PCI bus (32 bits 4 slots)

• PowerPC local bus (128 bit)
• 3 PCI buses (2 64-bit, 7 32-

bit slots total)
• ISA bus (2 slots)

• PowerPC local bus (dual 512
bit data, address buses)

• 4 PCI buses per I/O Drawer
(5 64-bit, 9 32-bit slots/rack)

• 4 RIO buses between system
and I/O Drawers

Final Evaluation Report: IBM RS/6000 Distributed System

211

 Table A.1 cont. Evaluated Hardware Components.

 Table A.1
(cont.)

 43P Model 150 Model F50 Model S70

 SCSI
Configuration
(at least one
required for
each
computer)

• 1 PCI Ultra-SCSI on
planar

• 0-2 F/C 6206 PCI Ultra-
SCSI adapters

• 2 PCI SCSI-2 (Fast/Wide)
on planar

• 0-6 F/C 6206 PCI Ultra-
SCSI adapters

• 1-8 F/C 6206 PCI Ultra-
SCSI adapters per I/O
Drawer

 SCSI Storage
Devices
(0+ means zero
or more; 1+
means one or
more)

 4 SCSI bays available:
• F/C 2900 or 2908 DASD

(1+)
• F/C 2624 CDROM (1+)
• F/C 6159 4mm Tape (0+)

 21 SCSI bays available:
• F/C 3080, 3084, 2900, 2911,

or 3019 DASD (1+)
• F/C 2619 CDROM (1+)
• F/C 6159 4mm Tape (0+)

 up to 16 total SCSI
drives/drawer:
• F/C 9394, 2900, 2911, or

3019 DASD (1-12)
• F/C 2619 CDROM drives

(1+)
• F/C 6159 4mm tape drives

(0+)
 Diskette Drive 1.44 MB diskette 1.44 MB diskette 1.44 MB diskette
 Graphics
Adapters, PCI
2-D
(one required)

• F/C 2838 GXT120P • F/C 2838 GXT120P • F/C 2838 GXT120P

 Monitor
(one required)

• F/C 3626 P202 (21")
• F/C 3620 P72 (17")

• F/C 3626 P202 (21")
• F/C 3670 P72 (17")

• F/C 3626 P202 (21")
• F/C 3620 P72 (17")

 Network
adapters
(at least one
required for
each
computer)

• Ethernet onboard
equivalent to F/C 2968

• F/C 2968 Ethernet
• F/C 2975 Token Ring
• F/C 2987 Ethernet

• Ethernet onboard equivalent
to F/C 2987

• F/C 2968 Ethernet
• F/C 2979 Token Ring
• F/C 2987 Ethernet

• F/C 2968 Ethernet
• F/C 2979 Token Ring
• F/C 2987 Ethernet

 Keyboard,
Mouse
(one each
required)

• F/C 6600 Keyboard
• F/C 6041 Mouse

• F/C 6600 Keyboard
• F/C 6041 Mouse

• F/C 6600 Keyboard
• F/C 6041 Mouse

 Operator
Panel, Controls

• Operator Panel Display
(LED)

• Power Switch w/LED
• Reset Button

• Operator Panel Display
(LED)

• Power Switch w/ LED
• Reset Button

• Operator Panel Display
(LED)

• Scroll/Enter Pushbuttons
• Attention/Power LEDs
• Power Push-button
• Service Processor (requires

external monitor).
Service
Processor

No Yes Yes

Printer
(optional)

IBM Model 4317 (Network
Printer 17)

IBM Model 4317 (Network
Printer 17)

IBM Model 4317 (Network
Printer 17)

Final Evaluation Report: IBM RS/6000 Distributed System

212

APPENDIX B: EVALUATED SOFTWARE
The evaluated software product is AIX Version 4.3.1 TCSEC Evaluated C2 Security. To meet
the C2 requirements, the administrator shall follow the AIX Version 4.3.1 TCSEC Evaluated C2
Security Release Notes detailing the initial system setup and then follow the additional TFM
guidance on installing and maintaining a C2 system.

Final Evaluation Report: IBM RS/6000 Distributed System

213

APPENDIX C: ACRONYMS
ACL Access Control List

AIX Advanced Interactive eXecutive

APAR Authorized Program Analysis Report.

API Application Programming Interface

ASD Architecture Summary Document

CMVC Configuration Management Version Control

DAC Discretionary Access Control

DASD Direct Access Storage Device

DIMM Dual Inline Memory Module

EPL Evaluated Product List

EUID Effective User ID

FTP File Transfer Protocol

GID Group Identifier

GUI Graphical User Interface

I&A Identification and Authorization

IP Internet Protocol

IPC Inter-Process Communications

ISD Interface Summary Document

ITSEC Information Technology Security Evaluation Criteria

JFS Journaled File System

LAN Local Area Network

LFS Logical File System

LPP Licensed Program Product.

NFS Network File System

NIST National Institute of Standards and Technology

NSA National Security Agency

PGWG Process Action Team (PAT) Guidance Working Group

POST Power On Self Test

PoP Philosophy of Protection

PTF Program Temporary Fix

RFC Request for Comments

rlogin Remote login

RPC Remote Procedure Call

SFUG Security Features User’s Guide

Final Evaluation Report: IBM RS/6000 Distributed System

214

SMP Symmetric Multi-Processing

SMIT System Management Interface Tool

TAI Trusted Application Interface

TCB Trusted Computing Base

TCP Transmission Control Protocol

TCSEC Trusted Computer System Evaluation Criteria

ToE Target of Evaluation

TEF TTAP Evaluation Facility

TFM Trusted Facility Manual

TPEP Trusted Products Evaluation Program

TRB Technical Review Board

TTAP Trusted Technology Assessment Program

TU Test Unit

UDP User Datagram Protocol

UID User Identifier

UP Uni-Processor

WSM Web-based System Management

Final Evaluation Report: IBM RS/6000 Distributed System

215

APPENDIX D: GLOSSARY
AIX Advance Interactive eXecutive; IBM’s version of UNIX for the RS/6000

computer.

APAR Authorized Program Analysis Report. A description of a problem with IBM
software that includes symptoms, levels of the software to which it applies,
severity, work-arounds if possible, and a description of the solution. When IBM
supplies a software fix for the problem the APAR will also list the current PTFs
that are to be applied to fix the problem.

Client A participant that makes a request of a server role entity using a client-server
protocol.

Client-server
model

An architecture used in network applications to permit client and server
programs to run on different computers. The client program handles user
requests and makes service requests to the server program.

CMVC Configuration Management Version Control. An IBM LPP that does software
lifecycle project management. It tracks defects, source code, builds, and testing.

DAC Discretionary Access Control. A means of restricting access to objects based on
the identity and need-to-know of the user, process and/or groups to which they
belong. The controls are discretionary in the sense that a subject with certain
access permission is capable of passing that permission (perhaps indirectly) on
to any other subject.

Daemon A process, not associated with a particular user, that provides services to the
local operating system or its users.

EPL Evaluated Product List. A list of equipment, hardware, software, and/or
firmware that has been evaluated against, and found to be technically compliant,
at a particular level of trust, with the DoD TCSEC by the NCSC. The EPL is
included in the National Security Agency Information Systems Security
Products and Services Catalogue.

FTP File Transfer Protocol. The predominant internet protocol used to transfer files
between hosts.

Host A term used to refer to one of the multiple RS/6000 computers that makes up
the RS/6000 system.

I&A The identification by which an individual requests a session on a system (logs
in), and the verification that the individual is who he/she claims to be.

IP Internet Protocol. The network layer protocol that is used to route data from an
origin host to a destination host on the Internet or on an intranetwork.

IPC Inter-Process Communications. Specifically, the System V IPC mechanisms that
includes message queues, semaphores, and shared memory segments.

LPP Licensed Program Product. A software product that is separately order-able

Final Evaluation Report: IBM RS/6000 Distributed System

216

with unique terms and conditions or is aggregated with other programs as a
"feature" of the aggregate.

Local Host (1) From the perspective of a user, the host computer to which the user logged
in; (2) From the perspective of an executing program, the host on which the
program is running; (3) 'localhost,’ a hostname alias for the local host computer.

Named Object An object that can be accessed by multiple user processes using a naming
convention provided at the TCB interface.

NFS Network File System. NFS is the protocol used between hosts to permit a user
at one host to access files physically located on another host.

Object Reuse The reassignment and reuse of a storage medium (e.g., page frame, disk sector,
magnetic tape) that once contained one or more objects. To be securely reused
and assigned to a new subject, storage media must contain no residual data
(magnetic remnant) from object(s) previously contained in the media.

PGWG Process Action Team (PAT) Guidance Working Group; NSA-sponsored group
that wrote the "Form and Content" requirements for vendor design and test
documentation.

PoP Philosophy of Protection. An informal description of the overall design of a
system that delineates each of the protection mechanisms employed. A
combination (appropriate to the evaluation class) of formal and informal
techniques is used to show that the mechanisms are adequate to enforce the
security policy.

PTF Program Temporary Fix. A software fix for a problem described by an APAR
built at and for a specific version of the software. Because multiple versions of a
software product may exist concurrently many PTFs may be generated by a
single problem. Also depending on the size and resultant packaging of the fix,
multiple PTFs may be generated for each version of software.

Public Object An object that can be publicly read by any user in the system, but can be
modified only by administrative users.

RFC Request for Comments. A form of protocol documentation.

rlogin Remote login. A service originally implemented on Berkeley UNIX systems that
allows authorized users of one host to connect to another host across a network
connection and interact as if their terminals were connected directly.

RPC Remote Procedure call. (1) In general, a facility that permits a local program to
request that a procedure call be executed on a remote host. (2) The means used
to request various Berkeley UNIX services, such as NFS, and mountd.

Service
Protocol

The networking protocol used by a client application to request services from a
server. This is a high level protocol that maps to the Presentation and
Application layers of the OSI reference model.

Final Evaluation Report: IBM RS/6000 Distributed System

217

SFUG Security Features User’s Guide. A document necessary to satisfy the
requirements of any TCSEC class. The SFUG is directed toward the general
users of the system. It describes the protection mechanisms provided by the
TCB, contains guidance on their use, and describes how they interact with one
another.

SMP Symmetric Multi-Processing. A tightly-coupled multi-processor computer
system that functions as if it were a singly computer (single copy of code,
shared data structures). The ToE includes up to 12-way SMP.

Socket (1) An abstraction used by Berkeley UNIX that allows an application to access
TCP/IP protocol functions. (2) An IP address and port number pairing.

Storage Object An object that supports both read and write accesses. (source: TCSEC
glossary).

Subject An active entity, generally in the form of a person, process, or device that
causes information to flow among objects or changes the system state.
Technically, a process/domain pair. (source: TCSEC glossary).

System For the RS/6000 evaluation, the system refers to any composition of one to all
of the RS/6000 host systems, and the associated LAN hardware used to
connect them, that make up the Target of Evaluation. This assembly of
hardware and software, when connected and administered as defined in the
[RS-TFM], enforces a well-defined security policy for the resources protected
by the system.

TAI Trusted Application Interface. A privileged interface that is intended for use
with an application that is trusted with the capability to bypass the security
mechanisms of the product.

TCB Trusted Computing Base. The totality of protection mechanisms within a
computer system - including hardware, firmware, and software - the
combination of which is responsible for enforcing a security policy. A TCB
consists of one or more components that together enforce a unified security
policy over a product or system. The ability of a TCB to correctly enforce a
security policy depends solely on the mechanisms within the TCB and on the
correct input by system administrative personnel of parameters (e.g. a user’s
clearance) related to the security policy [TCSEC].

TCP Transmission Control Protocol. A connection-oriented transport layer protocol
that provides sequencing, error recover, and flow control.

TCSEC Trusted Computer System Evaluation Criteria. A document published by the
National Computer Security Center containing a uniform set of basic
requirements and evaluation classes for assessing degrees of assurance in the
effectiveness of hardware and software security controls built into systems.
These criteria are intended for use in the design and evaluation of systems that
will process and/or store sensitive or classified data. This document is
Government Standard DoD 5200.28-STD and is frequently referred to as "The
Criteria" or "The Orange Book."

Final Evaluation Report: IBM RS/6000 Distributed System

218

TEF Licensed TTAP Evaluation Facility, for example, Arca.

Telnet An application protocol that provided interactive access to a remote host.

TFM Trusted Facility Manual. A document necessary to satisfy the requirements of
any TCSEC class. The TFM is directed towards administrators of an
installation. It provides detailed information on how to: (1) configure and install
the secure system; (2) operate the system securely; (3) correctly and effectively
use system privileges and protection mechanisms to control access to
administrative functions; and (4) avoid improper use of those function which
could compromise TCB and user security.

ToE Target of Evaluation. The specific configuration of hardware, firmware, and
software that is the candidate for an evaluation rating. Sometimes described as
"evaluation configuration."

TPEP Trusted Products Evaluation Program. The NSA program to evaluate trusted
products developed to meet a level of assurance specifies in the TCSEC.
Evaluated products are place on the evaluated products list (EPL) which is part
of the National Security Agency Information System Security Products and
Services Catalogue.

TRB Technical Review Board. The panel of senior evaluators which the evaluators
present evidence during the NCSC evaluation process. A TRB meets at the end
of each of the two stages of evaluations: Design Review and Formal Evaluation.
The TRB generates a recommendation at each stage. These recommendations
fall into three categories: (1) pass, (2) pass with some exceptions, and (3) fail.
The actual outcome is decided by NCSC management, who use the TRB results
as input into their decision process.

TTAP Trusted Technology Assessment Program. The National Security Agency
implemented TTAP in January of 1997 to authorize and oversee commercial
facilities performing trusted product evaluations.

TU Test Unit. A uniquely dispatch-able unit of testing work. It may include many
test cases and test variations but generally has a common thread, e.g. a login
auditing TU.

UDP User Datagram Protocol. A connectionless transport layer protocol, built
directly on the IP layer, that sends a single datagram to a remote host. It does
not provide sequencing, error recovery, nor flow control.

UP Uni-Processor. As contrasted with SMP, a host computer with a single
processor.

User Any authorized or unauthorized person who interacts directly with a system;
not including either passive or active wiretappers on the LAN or persons who
physically attack the computer system.

WSM (Web-based Systems Management.) A utility used by administrators for setting
up and configuring AIX systems.

Workstation One of the multiple RS/6000 computers that makes up the RS/6000 system.

Final Evaluation Report: IBM RS/6000 Distributed System

219

APPENDIX E: REFERENCES
Advanced Micro Devices, The Open Programmable Interrupt Controller (PIC) Register
Interface Specification Revision 1.2, AMD, 1 October 95.

DeRoest, James. AIX Version 4 System and Administration Guide J. Ranade Workstation Series
McGraw-Hill New York, New York. 1997.

Faigan, D. P. et. al. A Rigorous Approach to Determining Objects Proceedings of the 8th Annual
Computer Security Applications Conference. December 1993.

IBM, 1080 MB and 2160 MB SCSI-2 Disk Drives Installation User’s Guide, IBM Corp., 1 April
97.

IBM, 10/100 Mbps Ethernet-TX PCI Adapter Installation and User’s Guide, IBM Corp., 1
October 97.

IBM, 20X (Max) SCSI-2 CD-ROM Drive Installation and User’s Guide, IBM Corp., 1 October
97.

IBM, 4mm Tape Drive Installation Guide, IBM Corp., 1 November 96.

IBM, AIXv3 Operating System Technical Reference, Volume 3 Chapters 1-12, Advanced
Engineering Systems, IBM Corp., 9 March 92.

IBM, AIX General Programming Concepts: Writing and Debugging Programs, Version 4 4th ed.
IBM Corp., April 97.

IBM, AIX Kernel Extension and Device Support Programming Concepts, Version 4 5th ed. IBM
Corp., April 97.

IBM, AIX System Management Guide: Operating System and Devices, Version 4 5th ed. IBM
Corp., April 97.

IBM, AIX Technical Reference: Master Index, Version 4 3d ed. IBM Corp., October 96.

IBM, AIX Technical Reference: Volume 8: Enhanced X-Windows, Version 4 3d ed. IBM Corp.,
April 96.

IBM, AIX Technical Reference: Volume 9: Enhanced X-Windows, Version 4 2d ed. IBM Corp.,
April 96.

IBM, AIX Technical Reference: Volume 10: Enhanced X-Windows, Version 4 2d ed. IBM Corp.,
April 96.

IBM, AIXv4 Device Configuration Developers Guide, Draft 2.1 IBM Corp., 16 January 97.

IBM. AIX v4 Device Configuration Developers Guide, Draft 2.1 Advanced Workstation Systems,
IBM Corp., 16 January 97.

Final Evaluation Report: IBM RS/6000 Distributed System

220

IBM, Ethernet PCI Adapter Installation Guide, IBM Corp., 1 November 96.

IBM, PCI Differential Ultra SCSI Adapter Installation and User’s Guide, IBM Corp., 1 April 97.

IBM, PCI SCSI-2 Fast/Wide Differential Adapter Installation Guide, IBM Corp., 1 November
96.

IBM, PCI SCSI-2 Fast/Wide Single-Ended Adapter Installation Guide, IBM Corp., 1 November
96.

IBM, PCI Single-Ended Ultra SCSI Adapter Installation and User’s Guide, IBM Corp., 1 April
97.

IBM, PCI Adapter Placement Reference, IBM Corp., 1 October 97.

IBM, Power GXT120P Graphics PCI Adapter Installation and User’s Guide, IBM Corp., 1
October 97.

IBM, PowerPC Microprocessor Common Hardware Reference Platform (CHRP) System binding
to: IEEE Std 1275-1994 Standard for Boot (Initialization, Configuration) Firmware Revision
1.8, IBM Corp., 2 February 98.

IBM, RS/6000 7043 43P Series Models 140 and 240 Service Guide, IBM Corp., 1 October 97.

IBM, RS/6000 7043 43P Series Models 140 and 240 User’s Guide, IBM Corp., 1 October 97.

IBM, RS/6000 7025 F50 Series Service Guide, IBM Corp., 1 April 97.

IBM, RS/6000 7025 F50 User’s Guide, IBM Corp., 1 April 97.

IBM, RS/6000 Adapters, Devices, and Cable Information for Multiple Bus Systems, IBM Corp.,
1 October 97.

IBM, RS/6000 Enterprise Server S70 Installation and Service Guide, IBM Corp., 1 October 97.

IBM, RS/6000 Enterprise Server S70 Technology and Architecture, IBM Corp., 1 April 98.

IBM, RS/6000 Enterprise Server S70 User’s Guide, IBM Corp., 1 October 97.

IBM, RS/6000 Workstations: Facts and Features, IBM Corp., February 97.

IBM, SCSI-2 Fast/Wide Disk Drives ULTRA SCSI Fast/Wide Disk Drives Installation and User’s
Guide, IBM Corp., 1 April 97.

IBM, SCSI-2 Fast/Wide RAID Adapter Installation Guide, IBM Corp., 1 June 96.

IBM, SCSI-2 Fast/Wide Hot-Swap Disk Drive, IBM Corp., 1 November 96.

IBM, Service Processor 1.1 Installation and User’s Guide, IBM Corp., 1 October 1997.

IBM, Token-Ring PCI Adapter Installation and User’s Guide, IBM Corp., 1 October 1997.

Final Evaluation Report: IBM RS/6000 Distributed System

221

IBM, Trusted Facility Manual (TFM) for the RS/6000 Distributed System IBM Corp., 1998.

IBM, Security Features User’s Guide (SFUG) for the RS/6000 Distributed System IBM Corp.,
1998.

IEEE 1275 Working Group, PCI Bus Binding to: IEEE Std 1275-1994 Standard for Boot
(Initialization Configuration) Firmware Revision 2, IEEE. 7 August 96.

Kelly, David A. AIX/6000: Internals and Architecture. J. Ranade Workstation Series. McGraw-
Hill New York, New York 1996.

May, Cathy. et. al. The PowerPC Architecture: A Specification for a New Family of RISC
Processors, 2d ed. Morgan Kaufmann Publishers, Inc. San Francisco, California.1994.

Motorola, PowerPC 604 RISC Microprocessor User’s Manual, Motorola. 1 November 1994.

Motorola, Addendum to PowerPC 604 RISC Microprocessor User’s Manual: PowerPC 604e
Microprocessor Supplement and User’s Manual Errata, Motorola, 1996.

National Computer Security Center, PAT Guidance Working Group. Form and Content of
Vendor Design Documentation, Washington, May 1994.

Nye, Adrian, X Protocol Reference Manual. O’Reilly & Associates, Inc. Sebastopol, California.
1995.

O’Quin, John T. AIX CHRP Architecture, Version 0.6, IBM Corp., July 11, 1996

PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture.
Morgan Kaufmann Publishers, Inc., San Francisco, CA 1995.

PowerPC Microprocessor Family: The Programming Reference Guide, Apple/IBM/Motorola
1995.

PowerPC Microprocessor Family: The Programming Environments, Apple/IBM/Motorola 1997.

Sieger, Adreas. The AIX Survival Guide. Addison-Wesley, November 1996.

Stern, Hal. Managing NFS and NIS. O’Reilly & Associates, Inc. Sebastopol, California. 1991

Stevens, Richard W. UNIX Network Programming. Prentice Hall Software Series Prentice-Hall,
Inc. Englewood Cliffs, New Jersey. 1990.

U.S. Department of Defense, Trusted Computer System Evaluation Criteria, DOD5200.28-STD.
Washington, December 1985.

Final Evaluation Report: IBM RS/6000 Distributed System

222

APPENDIX F: EPL Entry
Report No. CSC-EPL-98-004

AS OF: 18 December 1998

PRODUCT: RS/6000 Distributed System

VENDOR: IBM Corporation

CANDIDATE CLASS: C2

TTAP EVALUATION FACILITY:

Arca Systems Evaluation Facilities (San Jose, Boston, Washington D.C., Austin), www.arca.com.
Contact Doug Landoll at (512) 310-2228, landoll@arca.com.

PRODUCT DESCRIPTION:

The RS/6000 Distributed System is a collection of IBM RS/6000 host computers connected via a
physically protected Local Area Network (LAN). The RS/6000 is a line of high-performance Uni-
Processor (UP) and Symmetric Multi-Processing (SMP) computers based on 32-bit and 64-bit
PowerPC processors and intended for use as a closed distributed network of workstations and
servers.

The target of evaluation consists of multiple interconnected RS/6000 hosts, each running Release
4.3.1 Evaluated C2 Security. AIX is IBM’s version of UNIX, which is differentiated from other
UNIX products by its system administration tools, Journaled File System (JFS),
pageable/preemptable kernel, loadable kernel extensions, hardware error detection, and available
applications. AIX Version 4.3 is POSIX- and SVID-compliant. All hosts include a X Windows
System with 2-D graphics capability, for local use. The X Windows system is considered trusted
only when invoked by the administrator to perform administrative actions through wsm.

Each host provides the same set of local services (such as file, memory, and process management)
and also provides network services (e.g., remote logins, file transfers, and network file services)
to users on other hosts within the distributed system.

PRODUCT STATUS:

AIX has been sold and supported as a commercial-off-the-shelf product by IBM Corp., since
1986. As of 1st quarter 1999, IBM plans to announce the availability of the RS/6000 Distributed
System and AIX Release 4.3.1 Evaluated C2 Security.

SECURITY EVALUATION STATUS:

The security protection provided by the RS/6000 Distributed System when configured according
to the Trusted Facility Manual has been evaluated by Arca Systems. The security features of the
RS/6000 Distributed System have been examined against the requirements specified by the
Department of Defense TCSEC dated December 1985.

Final Evaluation Report: IBM RS/6000 Distributed System

223

The Arca Systems evaluation team has determined the RS/6000 Distributed System satisfies all
the specified requirements of the criteria at class C2. For a complete description of how the
RS/6000 Distributed System satisfies each requirement of the Criteria, see Final Evaluation
Report, IBM Corporation, RS/6000 Distributed System running AIX 4.3.1 Evaluated C2 Security
(Report CSC-FER-98/004).

A system that has been rated C2 enforces a discretionary access control policy to protect
information. It allows users to share information under their control only with other specified
users. It helps identify and authenticate users in order to control access to the system and
enforces accountability. It prevents access to residual information from a previous user’s actions,
and provides for the auditing of security related events. The hosting hardware for the RS/6000
Distributed System in the evaluated configuration is the IBM 43P, F50, and S70.

ENVIRONMENTAL STRENGTHS:

The RS/6000 Distributed System provides user identification and authentication (I&A) by
requiring each user to login with the proper password at the local workstation and also at any
remote host, where the user can enter commands (e.g., remote login, telnet sessions). The system
maintains a consistent administrative database by making all administrative changes on a
designated Network File System (NFS) server and exporting the database files to all hosts in the
system. Thus, a user ID on any host refers to the same individual on all other hosts. Each host
enforces a coherent discretionary access control (DAC) policy based on UNIX-style mode bits,
and an optional Access Control List (ACL), for those named objects under its control. Each host
performs its own auditing using an audit configuration that is consistent across the system.

VENDOR CONTACT:

The RS/6000 Distributed System will be available through Product Request for Price and Quotes.
The point of contact for the evaluation is Margie Belvins, (512) 838-3176.

Final Evaluation Report: IBM RS/6000 Distributed System

224

APPENDIX G. AUDIT RECORD FORMAT
This appendix defines the format of an audit trail and each audit record within the trail. The audit
record format consists of a fixed-format header and a type-specific tail.

Audit Trail Format
An audit trail consists of a sequence of bins. Each bin starts with a bin head and must be
terminated by a bin tail before other bins can be appended to the trail.

Table G.1: Audit Trail Bins

Name Description
bin_magic The magic number for the bin, 0xf0f0.
bin_version The version number for the bin (3).
bin_tail Indicates whether the bin describes the audit trail head or tail:

0 = bin header
1 = bin end (tail)
2 = trail end

bin_len The (unpacked) length of the bin’s records. A nonzero value indicates that the bin has a tail
record.

bin_plen The current length of the bin’s record (might be packed).
bin_time The time at which the head or tail was written.
bin_cpuid[8
]

CPU id

Audit Record Header Format
The following table contains the header format for each audit record in an audit trail. This is
defined in /usr/include/audit.h.

Table G.2: Audit Header Format

Name Description
ah_magic Magic number for audit record.
ah_length The length of the tail portion of the audit record.
ah_event[16] The name of the event and a null terminator.
ah_result An indication of whether the event describes a successful operation. The values for this field are:

0 = successful completion
1 = failure
>1 = an errno value describing the failure

ah_ruid The real user ID; that is, the ID number of the user who created the process that wrote this record.
ah_luid The login ID of the user who created the process that wrote this record.
ah_name[16] The program name of the process, along with a null terminator.
ah_pid The process ID of the process that wrote this record.
ah_ppid The process ID of the parent of this process.
ah_tid The thread ID.
ah_time The time in seconds at which this audit record was written.
ah_ntime The nanoseconds offset from ah_time.
ah_cpuid[8] CPU identifier.

Final Evaluation Report: IBM RS/6000 Distributed System

225

Audit Tail Format
This section contains the event-specific record format for each audit event. The audit tail varies
from one event to another, but each event uses the following set of format definitions to describe
the layout of audit tail

Table G.3: Audit Tail Format

Format Size Description
%A Variable length byte stream. First 32-bit word N gives total length in bytes with N additional

bytes (for a total size of N + 4 bytes of data in the event record)
representing the access control list.
Formatted output is as with aclget command.

%d 1 32-bit word. Formatted as 32-bit signed decimal integer.
%G Variable length byte stream. Formatted as comma-separated list of group names.
%L Socket description with login ID. Internet Domain Sockets: Formats as a string with the requester

given as user@host.domain and the requester’s port number as
a decimal value.
Unix Domain Sockets: LUID is ignored, and the pathname
associated with the socket is formatted as a string.

%o 1 32-bit word. Formatted as 32-bit octal integer.
%P Variable length byte stream. First 32-bit word N gives total length in bytes with N additional

bytes (for a total size of N + 4 bytes of data in the event record)
representing the privilege control list.
Formatted output is as with pclget command.

%s Variable length string.
May contain one or more NUL
characters.

Formatted as a text string.

%S Socket description. Internet Domain Sockets: Formats as an IP address and port
number or service name.
Unix Domain Sockets: The pathname associated with the socket
is formatted as a string.

%T 2 32-bit words.
First 32-bit word represents whole
seconds since the epoch.
Second 32-bit words represents
microseconds.

Formatted as text string giving date and time with 6 significant
digits for the seconds (DD Mmm YYYY HH:MM:SS.mmmuuu).

%x 1 32-bit word. Formatted as 32-bit hexadecimal integer.

Final Evaluation Report: IBM RS/6000 Distributed System

226

Table G.4: Process Events

Audit Event System Call Description Detailed Record Info
PROC_Create fork() A new process is created. forked child process

%d
PROC_Delete exit() A process is terminated. exited child process

%d
PROC_Execute exec() A new program is executed. effective user id %d

effective group id %d
privilege %x:%x
filename %s

PROC_RealUID setuidx() One or more user id values for a process are
changed.

old real user id %d

PROC_AuditID setuidx() One or more user id values for a process are
changed.

old login user id %d

PROC_SetUserIDs setuidx() One or more user id values for a process are
changed.

effective user id %d
real user id %d
saved user id %d
login user id %d

PROC_RealGID setgidx() One or more group id values for a process are
changed.

real group id %d

PROC_Environ usrinfo() Various pieces of user environment data were
changed.

environment %s

PROC_Limits setrlimit() The resource limits for a process were set.
PROC_SetPri nice() The process niceness for a non-fixed priority

process was set.
nice value %d

PROC_Setpri setpri() A fixed priority for a process was set. fixed priority %d
PROC_Privilege setpriv() One or more privilege vectors for a process

were changed.
command %x
privilege set %x:%x

PROC_Settimer settimer() One of the system timers were changed. old time %T
new time %T

PROC_Adjtime adjtime() The system clock was changed. old time %T
delta %x:%x

PROC_Debug ptrace() Debugging operations were performed on a
process.

process id %d
command %d

PROC_Kill kill() Send a signal to a process. process id %d
signal %d

PROC_Setpgid setpgid() The process group ID was set. process id %d
process group %d

PROC_Load ld_loadmodule() A new object module was loaded into the
process address space.

file %s

PROC_LoadMember ld_loadmodule() A new object module was loaded into the
process address space.

file %s
member %s

PROC_LoadError ld_loadmodule() A new object module was loaded into the
process address space.

flags %x
library path %s
file %s

PROC_SetGroups setgroups() The process concurrent group set was changed. group set %G
ACCT_Disable acct() System accounting was disabled.
ACCT_Enable acct() System accounting was enabled. file %s

Final Evaluation Report: IBM RS/6000 Distributed System

227

Table G.5: File System Events

Audit Event System Call Description Detailed Record Info
FILE_Open open()

creat()
A new file descriptor was created for a named
file.

flags %o
mode %o
filename %s

TCB_Leak open()
creat()

A file with the TCB attribute has been
opened for read.

TCB_Mod open()
creat()

A file with the TCB attribute has been
opened for write.

FILE_Read read() A file descriptor was read from. file descriptor %d
FILE_Write write() A file descriptor was written to. file descriptor %d
FILE_Close close() A file descriptor was closed. file descriptor %d
FILE_Link link() A new directory entry was created for a file. linkname %s

filename %s
FILE_Unlink unlink() A file system object was removed. filename %s
FILE_Rename rename() A file system object’s name was changed. old name with path %s

new name with path %s
FILE_Owner chown() A file’s ownership was changed. owner %d

group %d
filename %s

FILE_Mode chmod() A file’s mode was changed. mode %o
filename %s

FILE_Fchmod fchmod() An open file’s mode was changed. mode %o
file descriptor %d

FILE_Fchown fchown() An open file’s ownership was changed. owner %d
group %d
file descriptor %d

FILE_Truncate truncate() Portions of a file were removed. filename %s
FILE_Symlink symlink() A symbolic link was created to another file

system object.
link %s
target %s

FILE_Pipe pipe() An unnamed pipe was created. read descriptor %d
write descriptor %d

FILE_Mknod mknod() A file system object was created (special file,
FIFO, and so on).

mode %o
device %d
filename %s

FILE_Dupfd fcntl() A file descriptor is duplicated. original file descriptor %d
new file descriptor %d

FS_Extend fscntl() A file system is extended. virtual file system %d
command %d

FS_Mount mount() A file system was mounted. object %s
stub %s

FS_Umount umount() A file system was unmounted. object %s
stub %s

Final Evaluation Report: IBM RS/6000 Distributed System

228

Table G.5 cont. File System Events

Audit Event System Call Description Detailed Record Info
FILE_Acl chacl() A file system objects ACL was changed. filename %s

ACL %A
FILE_Facl fchacl() A file descriptors ACL was changed. file descriptor %d

ACL %A
FILE_Chpriv chpriv() A files privilege control list was changed. filename %s

privilege control list %P
FILE_Fchpriv fchpriv() A file descriptors privilege control list was

changed.
file descriptor %d
privilege control list %P

FS_Chdir chdir() The current working directory was changed. directory to change to %s
FS_Fchdir fchdir() The current working directory was changed

using a file descriptor.
file descriptor %d

FS_Chroot chroot() The root directory was changed. directory to change to %s
FS_Rmdir rmdir() A directory was removed. directory %s
FS_Mkdir mkdir() A directory was created. directory %s

mode %o
FILE_Utimes utimes() Change the modification and access times on

a file.
filename %s

Table G.6: System V IPC Events

Audit Event System Call Description Detailed Record Info
MSG_Create msgget() A new message queue is created. key %d

flag %o
message id %d

MSG_Read msgrcv() A message is received from a message queue. message queue id %d
requester uid %d
process id %d

MSG_Write msgsnd() A message is sent on a message queue. message queue id %d
MSG_Delete msgctl() A message queue is removed. message queue id %d
MSG_Owner msgctl() A message queues ownership or access rights

were changed.
message queue id %d
owner %d
group %d
mode %o

MSG_Mode msgctl() A message queues access rights were queried. message queue id %d
mode %o

SEM_Create semget() A new semaphore set was created. key %d
number of semaphores %d
semaphore flag %o
semaphore id %d

SEM_Op semop() One or more semaphores were incremented
or decremented.

semaphore id %d

Final Evaluation Report: IBM RS/6000 Distributed System

229

Table G.6 cont. System V IPC Events

Audit Event System Call Description Detailed Record Info
SEM_Delete semctl() A semaphore set was deleted. semaphore id %d
SEM_Owner semctl() The access rights or ownership for a

semaphore set were changed.
semaphore id %d
owner %d
group %d
mode %o

SEM_Mode semctl() A semaphore set’s access rights were queried. semaphore id %d
mode %o

SHM_Create shmget() A new shared memory segment was created. key %d
size %d
flags %o
shared memory id %d

SHM_Open shmat() A shared memory segment was opened. shared memory id %d
SHM_Close shmctl() A shared memory identifier was removed. shared memory id %d
SHM_Owner shmctl() The ownership or access rights of the shared

memory segment were changed.
shared memory id %d
owner %d
group %d
mode %o

SHM_Mode shmctl() The access rights of a shared memory
segment were queried.

shared memory id %d
mode %o

Table G.7: TCP/IP Events

Audit Event System Call Description Detailed Record Info
TCP_ksocket socket() Create a communications end-point. fd %d

domain %s
type %s
protocol %s

TCP_ksocketpair socketpair() Create a pair of connected sockets. fd_1 %d
fd_2 %d
Domain %s
Type %s
Protocol %s

TCP_ksetopt setsockopt() Change or query a socket’s attributes. fd %d
Protocol %s
Option %d
Value %d

TCP_kbind bind() Bind a socket to a port. fd %d
endpoint %S

TCP_klisten listen() Listen on a port. fd %d
limit %d

TCP_kconnect connect() A TCP connection has been created. fd %d
remote socket and user
%L

Final Evaluation Report: IBM RS/6000 Distributed System

230

Table G.7 cont. TCP/IP Events

Audit Event System Call Description Detailed Record Info
TCP_kaccept Accepts a connection from a client. fd %d

local %S
remote %L

TCP_kshutdownt Connection has been broken. fd %d
reason %s

Table G.8: Audit System Events

Audit Event System Call Description Detailed Record Info
AUD_it audit() An audit subsystem request. command %d

argument %d
AUD_Bin_Def auditbin() Changes to bin mode auditing. command %d

current fd %d
next fd %d
bin size %d

AUD_Events auditevents() An audit events request. command %d
AUD_Lost_Recs A count of lost audit records. records %d
AUD_Objects auditobj() An object auditing request. command %d
AUD_Proc auditproc() A process auditing request. pid %d

command %d
PROC_Sysconfig sysconfig() A system configuration attribute has been

modified.
request %x

Table G.9: Logical Volume Manager Events

Audit Event Command /
System Call

Description Detailed Record Info

LVM_ChangeLV lchangelv A logical volume was changed. logical volume id %s
LVM_ChangeVG lchangepv

linstallpv
A volume group was changed. volume group id %s

LVM_CreateLV lcreatelv A logical volume was created. logical volume id %s
LVM_CreateVG lcreatevg A volume group was created. volume group id %s
LVM_DeleteVG ldeletepv A volume group was deleted. volume group id %s
LVM_DeleteLV rmlv A logical volume was deleted. logical volume id %s
LVM_VaryoffVG lvaryoffvg A volume group was varied off. volume group id %s
LVM_VaryonVG lvaryonvg A volume group was varied on. volume group id %s
LVM_AddLV hd_cfg() A logical volume was added to a volume

group.
volume group id %x:%x
logical volume index %d

LVM_KDeleteLV hd_cfg() The kernel deleted a logical volume. volume group id %x:%x
logical volume index %d

LVM_ExtendLV hd_cfg() A logical volume was extended in size. volume group id %x:%x
logical volume minor
number %d

LVM_ReduceLV hd_cfg() A logical volume was reduced in size. volume group id %x:%x
logical volume minor
number %d
message %s

Final Evaluation Report: IBM RS/6000 Distributed System

231

Table G.9 cont. Logical Volume Manager Events

Audit Event Command /
System Call

Description Detailed Record Info

LVM_KChangeLV hd_cfg() A logical volume was changed. volume group id %x:%x
logical volume minor
number %d
message %s

LVM_AvoidLV hd_cfg() A physical volume is being avoided. volume group id %x:%x
logical volume minor
number %d
message %s

LVM_MissingPV hd_cfg() A physical volume is missing. volume group id %x:%x
physical volume index %d

LVM_AddPV hd_cfg() A physical volume was added to the system. volume group id %x:%x
physical volume device
(major, minor) %d

LVM_AddMissPV hd_cfg() A missing physical volume was added. volume group id %x:%x
physical volume index %d

LVM_DeletePV hd_cfg() A physical volume was deleted. volume group id %x:%x
physical volume index %d

LVM_RemovePV hd_cfg() A physical volume was removed. volume group id %x:%x
physical volume index %d

LVM_AddVGSA hd_cfg() A vgsa area for a physical volume. volume group id %x:%x
physical volume index %d

LVM_DeleteVGSA hd_cfg() A vgsa area for a physical volume. volume group id %x:%x
physical volume index %d

LVM_SetupVG hd_cfg() A volume group was setup. volume group id %x:%x
LVM_DefineVG hd_cfg() A volume group was defined. volume group id %x:%x
LVM_ChgQuorum hd_cfg() Change the quorum count for a volume

group.
volume group id %x:%x
message %s

LVM_Chg1016 hd_cfg() Change the number of partitions allowed on
a disk.

volume group id %x:%x
new factor value %d

LVM_UnlockDisk hd_cfg() Release the reserve on all the disks in the
VG.

volume group id %x:%x

LVM_LockDisk hd_cfg() Regain the reserve on all the disks in the
VG.

volume group id %x:%x

Table G.10: FSO Access Events

Audit Event File Description
S_ENVIRON_WRITE /etc/data.shared/environ A write occurred to the environ file.
S_GROUP_WRITE /etc/data.shared/etc.group A write occurred to the etc.group file.
S_LIMITS_WRITE /etc/data.shared/limits A write occurred to the limits file.
S_LOGIN_WRITE /etc/security/login.cfg A write occurred to the login.cfg file.
S_PASSWD_READ /etc/data.shared/passwd A read occurred from the passwd file.
S_PASSWD_WRITE /etc/data.shared/passwd A write occurred to the passwd file.
S_USER_WRITE /etc/data.shared/user A write occurred to the user file.
AUD_CONFIG_WR /etc/security/audit/config A write occurred to the audit/config file.

Final Evaluation Report: IBM RS/6000 Distributed System

232

Table G.11: User And Administrative Commands

Audit Event Command Description Detailed Record Info
SRC_Addserver addserver A new subserver has been added to SRC. subserver attributes %s
SRC_Addssys addssys An SRC subsystem has been added to the

ODM.
subsystem attributes %s

AT_JobAdd at An at job was submitted to the system. filename %s
user %s
time%s

AT_JobRemove at
cron

An at job was removed from the system. filename %s
user %s

BACKUP_Export backbyinode
rdump

A backup of a file system by inode is being
performed.

status %s

DEV_Configure cfgmgr
mkdev

A device has been configured. device or error %s

DEV_Change chdev
mkdev

A change was made to an existing device. parameters %s

GROUP_Change chgroup
chsec
mkgroup
mkuser
chgrpmem

The attributes of a group have been
modified.

group %s
message %s

PORT_Change chsec The attributes of a port were modified. port %s
command line %s

SRC_Chserver chserver An SRC subserver has been modified. subserver attributes %s
SRC_Chssys chssys The attribute of an SRC subsystem have been

modified.
subsystem attributes %s

USER_Change chuser
chgroup
chsec
chfn
chsh

The attributes of a user have been modified. user %s
message %s

CRON_Start cron The cron daemon began processing for a
particular time range.

action %s
command or file %s
time %s

CRON_Finish cron The cron daemon completed execution for a
particular time range.

user %s
process id %s
time %s

CRON_JobRemove crontab A CRON job was removed from the system. filename %s
user %s
time %s

CRON_JobAdd crontab A CRON job was added to the system. filename %s
user %s
time %s

ENQUE_admin enq An administrative request has been made. queue %s
device %s
request %s
mail address %s
action %s

Final Evaluation Report: IBM RS/6000 Distributed System

233

Table G.11 cont. User And Administrative Commands

Audit Event Command Description Detailed Record Info
TCPIP_connect ftp

ftpd
rexec
rexecd
setclock
telnet
telnetd

TCP/IP connection established. protocol %s
from address %s
service %s
open/close %s
message %s

TCPIP_data_out ftp
ftpd

TCP/IP data sent. from address %s
local file %s
remote file %s
message %s

TCPIP_data_in ftp
ftpd

TCP/IP data received. from address %s
local file %s
remote file %s
message %s

TCPIP_access ftp
ftpd
rexecd
rshd

An access query was made. from address %s
service %s
user %s
result %s

GROUP_User grpck A non-existent user was removed from a
group.

username %s
group name %s

GROUP_Adms grpck A non-existent admin user was removed
from a group in /etc/security/group.

admin username %s
group name %s

INIT_Start init The init process has started a subprocess. process id %d
command %s

INIT_End init A subprocess of init has ended. process id %d
status %d

INSTALLP_Inst installp An LPP has been installed on the system. option name %s
level %s
status %s

USER_Logout logout A user logged off from the system. tty %s
DEV_Create mkdev A device was created. parameters or error %s
DEV_Start mkdev A device was started. parameters or error %s
GROUP_Create mkgroup A new group was created. group %s

message %s
USER_Create mkuser A user was created on the system. username %s

attributes %s
NVRAM_Config nvload Non-volatile RAM has been modified. parameters or error %s
PASSWORD_Change passwd

pwdadm
su
tsm

A user changed her password. username %s
tty %s

PASSWORD_Flags pwdadm The flags attribute for a user’s password has
been modified.

username %s
flags %s
terminal %s

Final Evaluation Report: IBM RS/6000 Distributed System

234

Table G.11 cont. User And Administrative Commands

Audit Event Command Description Detailed Record Info
PASSWORD_Check pwdck An entry in the password file has been

modified.
username %s
attribute %s
status %s

PASSWORD_Ckerr pwdck An unexpected error occurred while
attempting to verify the password file.

username or file, error

ENQUE_exec qdaemon A queued job has been executed. queue %s
request %s
host %s
file %s
mail address %s
action %s

USER_Reboot reboot An administrator has rebooted the system. username %s
USER_Exit rlogind

telnetd
The login shell has terminated. message %s

DEV_Stop rmdev A device was stopped. device or error %s
DEV_Unconfigure rmdev A device was unconfigured. device or error %s
DEV_Remove rmdev A device was removed from the system. device or error %s
GROUP_Remove rmgroup A group was removed. group %s
SRC_Delserver rmserver An SRC subserver has been removed. subserver type %s
SRC_Delssys rmssys An SRC subsystem has been removed. subsystem %s
USER_Remove rmuser A user was removed from the system. username %s
RESTORE_Import rrestore

restbyinode
A restore of a file system by inode is being
performed.

status %s

SENDMAIL_Config sendmail An attempt was made to change the
SENDMAIL configuration file.

config file %s

SENDMAIL_ToFile sendmail An attempt was made to send mail directly
to a user file.

remote username %s
filename %s

SENDMAIL_ToUser sendmail An attempt was made to send mail to a local
user.

remote username %s
local username %s

USER_SetGroups setgroups
newgrp

The effective group or groupset has been
changed.

primary group %s
group set %s

USER_SetEnv setsenv The privileged environment has been
changed.

username %s
new environment value
%s

USER_Shell shell A new shell has been started. tty %s
SRC_Start startsrc A subsystem was started by the System

Resource Controller.
subsystem name %s

SRC_Stop stopsrc A subsystem terminal normally. subsystem name %s
USER_SU su A user changes identities on the system. new username %s
SYSCK_Check sysck A problem was found while verifying a file. file %s

message %s
attribute %s

SYSCK_Update sysck An entry is being updated in the sysck.cfg
database.

file %s
attribute %s

Final Evaluation Report: IBM RS/6000 Distributed System

235

Table G.11 cont. User And Administrative Commands

Audit Event Command Description Detailed Record Info
SYSCK_Install sysck Post-installation verification has been

performed for a file.
file %s
lpp %s

SYSCK_Delete sysck A file is being uninstalled from the system. file %s
lpp %s

TCBCK_Check tcbck A problem was found while verifying a file. file %s
message %s
attribute %s

TCBCK_Update tcbck An entry is being updated in the sysck.cfg
database.

file %s
attribute %s

TCBCK_Delete tcbck A file is being uninstalled from the system. file %s
lpp %s

USER_Login tsm A user logged on to the system. user %s
tty or failure message %s

PORT_Locked tsm This port was locked due to invalid login
attempts.

port %s

USER_Check usrck A problem was found while verifying a user
attribute.

username %s
action %s
status %s

USRCK_Error usrck An error was found in an entry in
/etc/passwd.

bad password entry %s
message %s

Final Evaluation Report: IBM RS/6000 Distributed System

236

Appendix H. Trusted Programs
Table H.1. Trusted Programs

User Commands
Name Brief Description Setuid0

accton performs process-accounting procedures Yes
acledit edits the access control information of a file No
aclget displays the access control information of a file No
aclput sets the access control information of a file No
aixlong display the contents of a print queue in long format No
aixshort display the contents of a print queue in short format No
aixterm initializes an Enhanced X-Windows terminal emulator No
aixv2long display the contents of a print queue from an AIX Version 2 system in long format No
aixv2short display the contents of a print queue from an AIX Version 2 system in short format No
aixwide display the contents of a print queue in wide format No
arp displays and modifies address resolution Yes
at runs commands at a later time Yes
atq displays the queue of jobs waiting to be run Yes
atrm removes jobs spooled by the at command No
audit controls system auditing Yes
auditbin manages bins of audit information Yes
auditcat writes bins of audit records Yes
auditmerge combine multiple audit data files from one or more hosts into a single stream Yes
auditpr formats bin or stream audit records to a display device or printer Yes
auditselect selects audit records for analysis according to defined criteria Yes
auditstream creates a channel for reading audit records Yes
automount mounts NFS file systems automatically No
awk finds lines in files that match patterns and then performs specified actions on them No
backbyinode create a backup of a file system based on individual i-nodes Yes
backbyname create a backup of a file system based on individual file names No
backup backs up files and file systems No
bellmail sends messages to system users and displays messages from system users Yes
bindprocessor binds a process to a processor No
bootinfo determines and displays various boot information, including boot device type and boot

device name
No

bsdlong display the contents of a BSD Version 4.3 print queue in long format No
bsdshort display the contents of a BSD Version 4.3 print queue in short format No
cancel cancels requests to a line printer No
cat concatenates or displays files No
cfginet loads and configures an internet instance No
cfglvdd configure the Logical Volume Manager kernel process No
cfg64 configuration method for the 64-bit process environment No
cfgmgr configures devices by running the programs specified in the Configuration Rules

Object Class
Yes

cfgvg configure a Volume Group for use No
chcons redirects the system console to a specified device or file to be effective on the next start

of the system
Yes

Final Evaluation Report: IBM RS/6000 Distributed System

237

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

chdev changes the characteristics of a device Yes
chfn changes a user’s gecos information No
chfs changes attributes of a file system No
chgroup changes attributes for groups No
chgrpmem changes the administrators or members of a group No
chlang changes the language settings for system or user No
chlicense changes the number of fixed licenses and the status of the floating licensing of the

system
No

chlv changes only the characteristics of a logical volume No
chlvcopy change the characteristics of a Logical Volume copy No
chmod changes file modes No
chnfs changes the configuration of the system to invoke a specified number of biod and nfsd

daemons
No

chnfsexp changes the options used to export a directory to NFS clients No
chnfsmnt changes the options used to mount a directory from an NFS server No
chown changes the owner or group associated with a file No
chps changes attributes of a paging space No
chpv changes the characteristics of a physical volume in a volume group No
chque changes the queue name Yes
chqueuedev changes the printer or plotter queue device names Yes
chrctcp modify /etc/rc.tcpip according to input from the user No
chrole changes role attributes No
chsec changes the attributes in the security stanza files No
chsh changes a user’s login shell Yes
chssys changes a subsystem definition in the subsystem object class No
chtcb changes or queries the tcb attributes of a file Yes
chtz changes the TimeZoneInfo (TZ) environment variable in the /etc/environment file No
chvg sets the characteristics of a volume group No
chvirprt changes the attribute values of a virtual printer Yes
clvmd HACMP Concurrent Logical Volume Manager daemon This feature is not part of the

C2 evaluated system.
Yes

copyrawlv copy a raw Logical Volume to a new location No
cp copies files No
cplv copies the contents of a logical volume to a new logical volume No
crfs adds a file system No
cron runs commands automatically Yes
cronadm lists or removes CRONTAB or AT jobs Yes
crontab submits, edits, lists, or removes CRON jobs Yes
cut writes out selected bytes, characters, or fields from each line of a file No
digest converts an input file of ASCII characters into a binary file Yes
dspmsg displays a selected message from a message catalog No
deflvm define Logical Volume Manager configuration data for CFGMGR No
df reports information about space on file systems No
disable disables printer queue devices No
defragfs increases a file system’s contiguous free space No

Final Evaluation Report: IBM RS/6000 Distributed System

238

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

deftunnel defines and configures a tunnel device No
devinstall installs software support for devices Yes
diskusg generates disk accounting data by user ID Yes
ds_form front-end to DS_RSLT, generates the list of available search indexes. Yes
ds_reslt processes the results of the ds_rslt and return them in HTML format. Yes
dspdiagtask online diagnostic monitor - see if specified diagnostic is running No
dtconfig enables or disables the desktop auto-start No
dump_smutil utilities to put output from SYSDUMPDEV in cmd_to_discover format No
egrep searches a file for a pattern No
enable enables printer queue devices No
enq enqueues a file Yes
entstat provides ethernet device statistics Yes
entstat.phxent provides device statistics particular to F/C 2968 Yes
errpt lists and formats the stanzas in the error log Yes
exec_shutdown The real shutdown Yes
exportvg exports the definition of a volume group from a set of physical volumes No
extendlv increases the size of a logical volume by adding unallocated physical partitions from

within the volume group
No

extendvg adds physical volumes to a volume group No
fgrep searches a file for a literal string No
format formats either diskettes or read/write optical media disks Yes
fsck checks file system consistency and interactively repairs the file system No
ftp transfers files between a local and remote a host Yes
ftpd provides the server function for the Internet FTP protocol Yes
fuser identifies processes using a file or file structure Yes
getlvcb reads parameters from the logical volume control block No
getlvname generates or checks a logical volume name Yes
getlvodm get volume group and logical volume data from the Object Data Manager (ODM) No
getvgname generates a volume group name Yes
grep searches a file for a pattern No
groups displays group membership No
grpck verifies the correctness of a group definition Yes
head displays the first few lines or bytes of a file or files No
host resolves a host name into an Internet address or an Internet address into a host name Yes
hostent directly manipulates address-mapping entries in the system configuration database No
hostname sets or displays the name of the current host system No
hostnew alternative form of IP address to hostname mapping tool, i.e. different form of the

’host’ command
Yes

httpd The HTTP server daemon proper - receives and processes HTTP protocol. Yes
id displays the system identifications of a specified user No
importvg imports a new volume group definition from a set of physical volumes No
inetd provides Internet service management for a network Yes
installp installs available software products in a compatible installation pattern No
ipcs reports interprocess communication facility status Yes
ipcrm removes message queue, semaphore set, or shared memory identifiers No

Final Evaluation Report: IBM RS/6000 Distributed System

239

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

ipl_varyon vary on the root volume group during first phase IPL Yes
istat examines i-nodes No
killall cancels all processes except the calling process Yes
ksh invokes the Korn shell No
lchangelv changes the attributes of a logical volume Yes
lchangepv changes the attributes of a physical volume in a volume group Yes
lchangevg changes the attributes of a volume group Yes
lchlvcopy change the online mirror backup status of a logical volume Yes
lcreatelv creates an empty logical volume in a specified volume group Yes
lcreatevg creates a new volume group and installs the first physical volume Yes
ldeletelv deletes a logical volume from its volume group Yes
ldeletepv deletes a physical volume from a volume group Yes
lextendlv extends a logical volume by a specified number of partitions Yes
linstallpv installs a physical volume into a volume group Yes
lmigratepp moves a physical partition to a specified physical volume Yes
lmktemp create a logical volume template file No
ln links files No
locale writes information about current locale or all public locales No
logname displays login name No
logout stops all processes on a port Yes
lpd provides the remote printer server on a network Yes
lquerylv returns information on the logical volume specified Yes
lquerypv returns information on the physical volume specified Yes
lqueryvg returns information on the volume group specified Yes
lqueryvgs queries the volume groups of the system and returns information for groups that are

varied on-line
Yes

lreducelv reduces a logical volume by a specified number of partitions Yes
lresynclp synchronizes all physical partition copies of a logical partition Yes
lresynclv synchronizes all physical partition copies of a logical partition Yes
ls displays the contents of a directory No
ls_admin displays and edits the license server database No
lsadpnm displays all available communications adapter names No
lsallq lists the names of all configured queues No
lsallqdev lists all configured printer and plotter queue device names within a specified queue No
lsattr displays attribute characteristics and possible values of attributes for devices in the

system
No

lsaudit display audit classes currently defined Yes
lscfg displays configuration, diagnostic, and vital product data information Yes
lsconn displays the connections a given device, or kind of device, can accept No
lsdev displays devices in the system and their characteristics No
lsfs displays the characteristics of file systems No
lsgroup displays the attributes of groups No
lsitab lists records in the /etc/inittab file No
lsjfs displays the attributes of journaled file systems No
lslpp lists software products No

Final Evaluation Report: IBM RS/6000 Distributed System

240

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

lslv displays information about a logical volume Yes
lsmle lists various cultural convention items from the ODM No
lsnfsexp displays the characteristics of directories that are exported with the Network File

System
No

lsnfsmnt displays the characteristics of NFS mountable file systems No
lsparent displays the possible parent devices that accept a specified connection type or device No
lsps displays the characteristics of paging spaces No
lspv displays information about a physical volume within a volume group Yes
lsque displays the queue stanza name No
lsquedev displays the device stanza name No
lsresource displays bus resources for available devices in the system and recommends attribute

values for bus resource resolution
Yes

lsrole displays role attributes No
lssec lists the attributes in the security stanza files No
lssrc gets the status of a subsystem, a group of subsystems, or a subserver Yes
lsuser displays attributes of user accounts No
lsvfs lists entries in the /etc/vfs file No
lsvg displays information about volume groups Yes
lsvgfs list the file systems contained in a volume group Yes
lsvirprt displays the attribute values of a virtual printer No
lvaryoffvg vary off a volume group Yes
lvaryonvg vary on a volume group Yes
lvchkmajor check and return the major number for a volume group No
lvgenmajor return a major number for a volume group Yes
lvgenminor return a minor number for a volume group or logical volume Yes
lvlstmajor list the range of available major numbers No
lvmmsg output a logical volume command message No
lvrelmajor release a major number for a volume group Yes
lvrelminor release a minor number for a logical volume Yes
mergedev copy devices from first phase IPL ramdisk to root directory No
mesg permits or refuses write messages Yes
migfix calculate moves needed to migrate a physical partition No
migratepv moves allocated physical partitions from one physical volume to one or more other

physical volumes
No

mirrorvg mirrors all the logical volumes that exist on a given volume group No
mkdev adds a device to the system Yes
mkgroup creates a new group No
mkitab makes records in the /etc/inittab file No
mklv creates a logical volume No
mklvcopy provides copies of data with the logical volume No
mknfsexp exports a directory to NFS clients No
mknfsmnt mounts a directory from an NFS server No
mknod creates a special file Yes
mkps adds an additional paging space to the system No
mkque adds a printer queue to a system Yes

Final Evaluation Report: IBM RS/6000 Distributed System

241

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

mkquedev adds a printer queue device to a system Yes
mkrole creates new roles No
mksysb creates an installable image of the root volume group No
mktcpip sets the required values for starting TCP/IP on a host No
mkuser creates a new user account No
mkvg creates a volume group No
mkvirprt makes a virtual printer Yes
mount makes a file system available for use Yes
namerslv directly manipulates domain name server entries for local resolver routines in the

system configuration database
No

newgrp changes a user’s real group identification Yes
netstat shows network status Yes
nfsstat displays statistical information about the Network File System (NFS) and Remote

Procedure Call (RPC) calls
Yes

od displays files in a specified format No
odmget retrieves objects from the specified object classes into an odmadd input file No
oslevel reports the latest installed maintenance level of the system No
pac prepares printer/plotter accounting records Yes
passwd changes a user’s password Yes
penable enables or reports the availability of login ports Yes
ping sends an echo request to a network host Yes
pioattred provides a way to format and edit attributes in a virtual printer Yes
piobe printer job manager for the printer backend Yes
piochdfq changes the default print queue No
piodmgrsu run PIODMGR as the root user Yes
pioevattr shows virtual printer attributes No
piofontin copies fonts from a multilingual font diskette Yes
piomkapqd builds a SMIT dialog to create print queues and printers Yes
piomkpq creates a print queue Yes
piomisc_base printer queue and job query/maintenance routines No
pioout printer backend’s device driver interface program Yes
piopredef creates a predefined printer data-stream definition Yes
plotbe plots HP-GL files to a plotter device No
ps shows current status of processes Yes
putlvcb writes logical volume control block parameters into the logical volume control block Yes
putlvodm put volume group and logical volume data into the Object Data Manager Yes
pwdadm administers users’ passwords No
pwdck verifies the correctness of local authentication information Yes
qadm performs system administration functions for the printer spooling system No
qchk displays the status of a print queue No
qdaemon schedules jobs enqueued by the ENQ command Yes
qpri prioritizes a job in the print queue No
qstatus provides printer status for the print spooling system No
quotacheck checks file system quota consistency No
rcp transfers files between a local and a remote host or between two remote hosts Yes

Final Evaluation Report: IBM RS/6000 Distributed System

242

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

rc.tcpip initializes network daemons at each system restart No
reboot restarts the system Yes
readlvcopy Read/copy all or a portion of a logical volume No
redefinevg redefines the set of physical volumes of the given volume group in the device

configuration database
No

reducevg removes physical volumes from a volume group No
refresh requests a refresh of a subsystem or group of subsystems Yes
reorgvg reorganizes the physical partition allocation for a volume group No
restbyinode restore one or more files from a backup which was performed by inode Yes
restbyname Restore by name No
restore copies previously backed-up file systems or files, created by the backup command,

from a local device
No

restvg restores the user volume group and all its containers and files, as specified in the
/tmp/vgdata/vgname/vgname.data file contained within the backup image created by
the SAVEVG command

No

rexec executes commands one at a time on a remote host Yes
rexecd provides the server function for the REXEC command Yes
rlogin connects a local host with a remote host Yes
rlogind provides the server function for the rlogind daemon Yes
rm removes (unlinks) files or directories No
rmdev removes a device from the system Yes
rmfs removes a file system No
rmgroup removes a group No
rmitab removes records in the /etc/inittab file No
rmlv removes logical volumes from a volume group No
rmlvcopy removes copies from a logical volume No
rm_mlcache_file remove the OSLEVEL command cache file Yes
rmnfsexp unexports a directory from NFS clients No
rmnfsmnt removes an NFS mount No
rmque removes a printer queue from the system Yes
rmquedev removes a printer or plotter queue device from the system Yes
rmrole removes a role No
rmuser removes a user account No
rmvirprt removes a virtual printer Yes
route manually manipulates the routing tables Yes
rsh executes the specified command at the remote host or logs into the remote host Yes
rshd provides the server function for remote command execution Yes
ruser directly manipulates entries in three separate system databases that control foreign

host access to programs
No

savebase saves information about base-customized devices in the Device Configuration database
onto the boot device

No

savevg finds and backs up all file belonging to a specified volume group No
securetcpip enables the operating system network security feature No
sed provides a stream editor No

Final Evaluation Report: IBM RS/6000 Distributed System

243

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

semutil create or remove the SENDMAIL queue directory semaphore Yes
sendmail routes mail for local or network delivery Yes
setclock sets the time and date for a host on a network Yes
setgroups resets a session’s process group set Yes
setmaps sets terminal maps or code set maps No
setsenv resets the protected state environment of a user Yes
shell executes a shell with the user’s default credentials and environment Yes
showled change the values on the front panel LED display No
shutdown ends system operation No
sm_inst displays packages and filesets available on install media No
smitacl Reads roles database to determine if user is permitted to view designated SMIT panels Yes
sort sorts files, merges files that are already sorted, and checks files to determine if they

have been sorted
No

splitlvcopy splits copies from one logical volume and creates a new logical volume from them No
splp changes or displays printer driver settings Yes
srcmstr starts the system resource controller Yes
startsrc starts a subsystem, a group of subsystems, or a subserver Yes
stopsrc stops a subsystem, a group of subsystems, or a subserver Yes
strings finds the printable strings in an object or binary file No
su changes the user ID associated with a session Yes
swapon specifies additional devices for paging and swapping Yes
swcons redirects, temporarily, the system console output to a specified device or file Yes
synclvodm synchronizes or rebuilds the logical volume control block, the device configuration

database, and the volume group descriptor areas on the physical volumes
No

syncvg synchronizes logical volume copies that are not current No
sysck checks the inventory information during installation and update procedures Yes
sysdumpdev changes the primary or secondary dump device designation in a running system No
sysdumpstart provides a command line interface to start a kernel dump to the primary or secondary

dump device
No

tail writes a file to standard output, beginning at a specified point No
tcbck audits the security state of the system Yes
tcpdump prints out packet headers No
tee displays the output of a program and copies it into a file No
termdef queries terminal characteristics No
tctl gives subcommands to a streaming tape device No
telnet invokes the telnet server daemon Yes
telnetd provides the server function for the TELNET protocol Yes
timed invokes the time server daemon No
timedc returns information about the timed daemon Yes
tokstat shows token-ring device driver and device statistics Yes
tokstat.cstok device specific support for tokstat Yes
tr translates characters No
traceroute prints the route that IP packets take to a network host Yes
tracesoff turns off tracing of a subsystem, a group of subsystems, or a subserver No
traceson turns on tracing of a subsystem, a group of subsystems, or a subserver No

Final Evaluation Report: IBM RS/6000 Distributed System

244

Table H.1. cont. Trusted Programs

User Commands
Name Brief Description Setuid0

tsm provides terminal state management Yes
tstresp test for a valid yes or no response in the current locale No
tvi provides a trusted editor with a full screen display No
umount unmounts a previously mounted file system, directory, or file Yes
unmirrorvg removes the mirrors that exist on volume groups or specified disks No
updatelv update Database for Logical Volume in the Volume Group No
updatevg update Database for Volume Group No
users displays a compact list of the users currently on the system No
usrck verifies the correctness of a user definition Yes
varyoffvg deactivates a volume group No
varyonvg activates a volume group Yes
w prints a summary of current system activity Yes
wall writes a message to all users that are logged in No
watch observes a program that may be untrustworthy Yes
wc counts the number of lines, words, and bytes in a file No
who identifies the users currently logged in No
whoami displays your login name No
wsmappletcfg configuration utility for wsm No
X starts the X server. No
xinit initializes the X Window System. No
xlock locks the local X display until a password is entered Yes
xpowerm starts Power Management GUI (Graphical User Interface) Utility No
xterm provides a terminal emulator for the X Window System No

Final Evaluation Report: IBM RS/6000 Distributed System

245

 APPENDIX I: EVALUATOR COMMENTS

Testing Documentation
The team found the test documentation and supporting design documentation to be useful, well
written and organized. The Test Matrix Document (TMD) followed the Architecture Summary
Document and the Interface Summary Document closely. The TMD also was written in HTML
and provided links from high level matrices to lower level matrices. This aided understanding and
quickened test coverage analysis.

Configuration Management
IBM’s use of the Configuration Management Version Control (CMVC) system was used to
coordinate and track software versions and associated documents and manuals. Any and all
modifications were recorded, tracked, and resolved as defects against the code, user manuals,
administrator manuals, test documents, and test code.

